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What is Electrical Engineering? USC

University of

* Electrical Engineering is an engineering discipline concerned with thes"‘“hemc”‘f‘m

study, design, and application of equipment, devices, and systems which
use electricity, electronics, and electromagnetism.
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Let’s look at EE at play: 3 little pigs demo by Neuralink USC
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Neuralink - the neural implant USC

University of

Southem California

LINK V0.9

1024 channels per Link

23 mm x 8 mm

Flush with skull (invisible)

6-axis IMU, temperature, pressure, etc.

Megabit wireless data rate, post compression

All day battery life

 Every step of the neural implant design
and fabrication requires electrical
engineering




Neural interfaces — under the hood
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(c)

(a) Two clinical neural interfaces: a percutaneous neural recording implant similar to [1],and a deep brain stimulator.
(b) Components for an implantable bidirectional (black) or closed-loop (black and gray) wireless neural interface. (c)
Example neural interface electrodes. [From left to right (adapted from Utah microelectrode array [6], SENSIGHT by
Medtronic [7], ultrathin polymer threads by Neuralink [8], high-density neural matrix [9], Stentrode by Synchron [10],
and ultraflexible syringe-injectable mesh [11]).] LNA: low-noise amplifier; ADC: analog-to-digital converter; Tx:
transmitter; ML: machine learning; DAC: digital-to-analog converter; Rx: receiver.



Link v0.9

Sensors
need
electrical
engineering,
mechanical
engineering,
materials
science,
chemical
engineering
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Surgical robots need robotics, electrical engineering, USC
mechanical engineering, control engineering Universityof
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Brain recording from 1024 analog pixels US
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* Each neural recording unit
requires sensors, integrated
circuits, communications, and
power
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What is currently driving computing?




How do we carry out so much computing? US

University of
Southern California

We use
“transistors!




1956 Physics Nobel Prize

"for their researches on semiconductors and their discovery of the

transistor effect”

William Bradford
Shockley

® 1/3 of the prize

USA

Semiconductor
Laboratory of Beckman

Instrurnents, Inc.
Mountain Yiew, CA, USA

John Bardeen

® 1/3 of the prize
UsSA

University of Illinois
Urbana, IL, USA

Walter Houser
Brattain

® 1/3 of the prize
USA

Bell Telephone
Laboratories
Murray Hill, N, USA

USC
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What is a transistor? US(;
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What is a transistor? US(;{
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1.1t acts as an on-off switch.

2.We want to switch it on and off as fast as
possible.

3.We want to switch it on and off with as little
power usage as possible.



What do modern day integrated circuits look like? USC
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« Key points

* Total of ~150 billion transistors

* Uses 5 nm node technology

* Density of transistors is ~130-230 million
transistors/mm?

* In the area of a cell , we could fit ~100k - 1
million transistors

AMD Instinct MI300 Accelerator

« Multiple parts of this processor use 3-D
stacked dies

* Enables computing, memory, sensing, and
stimulation to be integrated together

« Performance ~8x improved over previous
MI250 Accelerator

* If they upgraded the fastest supercomputer
to this part, they could train the largest
Al/ML systems



What do these look like?
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— Wires to connect all the
transistors together

- } Active devices (silicon
transistors)



How did we get here?




How much has computing power increased? USC
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1.E+13
*
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1.E+12 - The growth of supercomputer power, measured as the number of floating-point operations carried out per second
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* From 1990 to today, the worlds largest super computers have
increased computing power by 100,000x
« That’s a lot!

By Our World In Data - https://ourworldindata.org/grapher/supercomputer-power-flops



The First Moon Landing Was Achieved With Less Computing USC

University of

Power Than a Cell Phone or a Calculator Soubern Cliornia

On board Apollo 11 was a computer called
the Apollo Guidance Computer. It had 2,048
words of memory that could be used to store
“temporary results”—data that is lost when
there is no power. This type of memory is
referred to as RAM (random access memory).
Each word comprised 16 binary digits (bits),
with a bit being a zero or a one. This means
that the Apollo computer had 32,768 bits of
RAM memory.

My computer has 64,000,000,000 bits of RAM
memory

That is 2,000,000 times more than what was
needed in Apollo 11.
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How do we make transistors faster?




Scaling — How much have we scaled devices? USC
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* 1971: The first commercial microprocessor...Intel 4004
* 4-bits
* Less than 1 square inch in area
 Transistors that were 10 micrometers long
e ~/50 kilohertz speed

e ...but more powerful than the computers from earlier that
weighed 30 tons

Let’s say that this is a scaled version of how long a transistor was in 1971



Scaling — How much have we scaled devices? USC
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* 1990s: The first Pentium processor

e 66 MHz. That’s 100 times faster than in 1970.

 Can you think of anything else that has improved by 100x in
20 years?

£
T

1993



Scaling — How much have we scaled devices? USC
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e 7012: R T e Memory Controller

¢ 1-3 GhZ
e Multi-core
» Super-fast

e Each transistor is
almost 1000 times Q
smaller!

: Shared L3 Cache' -
0 Ll

1971
1993

Can’t even see the size on the screen...not enough pixels




Scaling — How much have we scaled devices?
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 What does a modern CPU cross section look like?
 Where are the transistors?
* What are we looking at?

USC

University of
Southem California

Intel 4 cross section:
to be released 2023



FINnFET Transistors (May 2011 and After) USC
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* FinFETs
* Why is it called that?
* What do you think the advantage is?



Scaling — How much have we scaled devices? US
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Introducing Intel's new node naming

10nm

SuperFin

Previously referredto Previously referred Power and area The angstrom era
as Enhanced SuperFin toas 7nm improvements of semiconductors

* Breakthrough innovations in
H 2024

* RibbonFET — new transistor
architecture

* Inhigh-volume 10-15% perf/watt gain 20% perf/watt gain * 18% perf/watt gain
>
RyeghiskAT FinFET transistor Fulluse of EUV *2:BensATEATIPRY
optimizations lithography + Increased intrinsic drive
Now in volume Meteor Lake for client current

production tapein Q22021 Reduced via resistance 1 PowerYIa STERCRINPS!
innovation

Granite Rapids compute « |ncreased EUV use

tile for data center {
* Manufacturing products

2H2023

accelerated

* This is a recent roadmap for Intel’s transistor scaling
plans



Scaling — How much have we scaled devices? USC

FINFET CHANGING TO NANOWIRE/NANORIBBON

University of
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EinEEl Nanoribbon

* What is a Nanoribbon FET?

* Why does it give better performance?




My background and research USC
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@DALLAS zyvex
" =)
IILMS | o &j) KAUST
Electrical Engineering ®
and Materials Science
BS, EE, 2010 MS, EE, 2012
@

Started PhD, 2013

Flexible Hybrid Y Bioe.lectronic.and
Electronics (s(:\("\;\\ ® Biophotonic Berkeley
2}016 015 ' 2014 Systems
11at\ur(i electrc;ljics St a n f 0 I'd
\AB Y &
N ) ‘ ‘
9 PhD, Started
B ~« EECS, postdoc, 2019
2018 Wearables for

Ventilator for
COVID-19

precision health
and psychiatry

26



Khan Lab @ USC
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School of Engineering

Keck School of
Medicine of USC
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Hardware and
software Al

@3

@ Precision
psychiatry

i
L

Large-area
additive
manufacturing

Multi-modal (
sensing

Ingestibles

Flexible Hardware Al,
hybrid In-sensor data

electronics processing

@ Precision
health

USC Institute for Technology
And Medical Systems Innovation
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Khan Lab @ USC

Sensors Systems
level level
Biophotonic

/)
e%

Bioelectronic

Biochemical Ingestibles

Community
level

B

Hardware and
software Al

@3

@® Precision
psychiatry

® Precision
health

USC

University of

SomhemCa.hforma
Research Focus

Medical Hardware
devices Al

Precision Precision

health psychiatry
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Soft sensor systems for precision health and psychiatry USC
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Large-area additive
manufacturing

Multi-modal
sensing and
data

Hardware and

processing ; Software Al
Wearables ] A0

& ® Precision

Ingestibles Feyehiatry

® Precision

Health

Materials, Systems and
Manufacturing, Design, Applications

Devices, and Circuits
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Sensors for precision health and psychiatry USC
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" [PPrinted Red OLED  [] PEN Sensor Boar.a"'-..,..
D Printed Green OLED |:| Polyimide Flex Boarc'f
[ Printed OPD B Microcontroller
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[] Battery Pack
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Epidermis

Dermis

vessels oil

Cross sectional view of
flexible sensor patch placed on chest

Vision:
A flexible sensor patch that seamlessly

measure vital signs - measurements of
the body’s most basic functions

Current state:
Big machines with a lot of wired rigid
sensors that limits the comfort of the
patient

30



Al-powered biosensor for detecting hand gestures USC
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« Biopotential sensing for
gesture recognition

FlexEMG

HIGH-DENSITY FLEXIBLE EMG-BASED GESTURE RECOGNITION WEARABLE DEVICE USING
HYPER-DIMENSIONAL COMPUTING

Berkeley

UNIVERSITY OF CALIFORNIA

31



Screen-printed MRI receive coils

USC

University of
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* High-throughput.
« Scalable.

* Fast.

« Significantly less

process steps
compared to
photolithography.




3D gas mapping in the gut with Al-enabled ingestible and wearable USC

electronics

Magnetic field strength

I

Our approach:
Wearable multi-layer
coil for 3D field
gradient, and use a
bend sensor for
accounting for
movement.

University of

Southem California

Existing approach: Helmholtz coil for producing a
region of nearly uniform magnetic field and localizing
ingestible inside the coil.

Magnetic sensor Neural
(Bxsz, Bysz, B2) @ network %

/
4
/
/
'
Location:
A
(8 7 4
'd
/
’

Optical sensor
LED PD
™ |
Magnetic
field

Optical signal

Gas sensing
membrane Gas concentration

Optical absorption spectroscopy for gas sensing

33



3D gas mapping in the gut with Al-enabled ingestible and wearable USC
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e l.e Ct ron i CS Southem California
USCiterbi

About Academics Admission Research Innovation

From Wearables to YIFe,rbl

khan.usc.edu

Swallowables: USC
Engineering Researchers
Create GPS-like Smart Pills
with Al

Utilizing wear‘al;Ie electronics and Al, new ingestible sensors
provide real-time 3D monitoring of gastrointestinal health

34



Kapadia Lab Research Portfolio

ﬁack-End Materials Growth and Heterogeneous\

Integration
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John O’Brien Nanofabrication Laboratory USC
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Etch Deposition Lithography Wet Processing Packaging

Infrastructure

- $50M 12,000 Sq. ft. facility
- +24,000 sq. ft. automated facility for facilities, gases, and support systems

- 35+ state-of-the-art cleanroom tools including e-beam and direct write tools, Si and compound semiconductor
processing

« Sample size from pieces to 100mm (min) and 150mm (subset — but all 111-V)
Scalability:

« +200 users (2024) with expansion to +500 users planned. The lab can handle 100 active users.
- Space available within current facility for additional capacity and capability



The MOSIS Service: Background and History Q§C§
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 The MOSIS Service was founded in 1981 at Information Sciences
Institute, Viterbi School of Engineering of University of Southern
California

* DARPA provided the contract for The MOSIS Service to facilitate
the first manufacturing projects for fabless organizations

 The MOSIS Service pioneered the Multi-Project Wafer (MPW)
model

 The MOSIS Service has processed over 60,000 designs at more
than a dozen foundries

e Customers of The MOSIS Service have included US Government
Laboratories, foreign and domestic corporations, and foreign and
domestic universities

 MOSIS has enabled IC designers to prototype innovative
semiconductor designs in CMOS FinFET, FD-SOI, Bulk, 111-V
Compound, high-voltage BCD, and other specialty processes




Overview of MOSIS 2.0

Academic Customers

[ National Lab Customers 1

E Commercial Customers }
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Overview of MOSIS 2.0 - MPW Offerings ~ So

Intel Si CMOS 16, 22

Skywater Si CMOS 90, 130

TSMC Si CMOS 12, 16, 22, 28, 40, 45, 55, 65, 90, 130, 180, 250, 350
Samsung Si CMOS 28,65, 130

WIN Semi GaAs pHEMT 100, 150, 180, 250, 450, 500

WIN Semi GaN HEMT 120, 150, 250, 450

WIN Semi GaAs HBT 7" Gen, 5" Gen, 4" Gen

Northrop Grumman Under Development GaN GaN20_PWR; InP N60; GaAs P3H; GaAs P3K; GaAs P3D;

Teledyne Under Development InP NGO

Global Foundries
Tower Semi

HRL

Under Development
Under Development

Under Development

Si CMOS : RF SOI: RF SiGe; SiPh SOI
SiGe
GaN T3



EE 105 Course objectives USC
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e Understand theoretical and practical
concepts in electrical engineering.

e Overview of devices, circuits, systems, and
Al/ML tools.

e Design simple biosensor systems from

end to end. Hands-on

. . . EE System
e Design imager systems with embedded cardware TS5 ooe
ML.

e Design and implement electronic systems ystem
for given SpeCiﬂcatiOnS. development



Syllabus USC

University of
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* Dynamic syllabus:
nttps://drive.google.com/file/d/1H|TI133m4UouCzfoHWDAxYgaWjo

pf419k/view?usp=sharing

Prof. Rehan Kapadia
Emails; rkapadia@usc.edu
Offices: PHE 626

-_: Prof. Yasser Khan
~ Emails: yasser.khan@usc.edu
Offices: MCB 270D

Vikas Addepalli (Course Mentor)
Emails: daddepal@usc.edu

Atiyeh Abbasi Jalal

(Teaching Assistant)
. Emails: abbasija@usc.edu

AT
»E.GL’ Walter Unglaub

4 (Research Engineer)
Emails: unglaub@usc.edu "



https://drive.google.com/file/d/1HjTI33m4UouCzfoHWDAxYqaWjobf419k/view?usp=sharing
https://drive.google.com/file/d/1HjTI33m4UouCzfoHWDAxYqaWjobf419k/view?usp=sharing
mailto:yasser.khan@usc.edu
mailto:abbasija@usc.edu
mailto:rkapadia@usc.edu
mailto:daddepal@usc.edu
mailto:unglaub@usc.edu

Course structure USC

University of
Southem California

* |Lectures and discussions are sufficient for homework and final exam

* Emphasis on practical learning
 Homework to review major concepts

Homework 30% (6)
Mid 30% (October 17, Thursday)
Final 40% (December 12, 2-4pm,

cumulative)



Approximate schedule USC

University of
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» Course homepage: https://brightspace.usc.edu/d2l/home/114204
* 6 homework assignments
e Final in finals week
* Mid October 17 in class

HW1 HW 6

Final




Course content

ECE 105: WEEKLY COURSE SCHEDULE

Weel
Week 1

Week 2

Week 3

Week 4

Week 5

Week &

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Week 13

Week 14

Week 15

Day
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday
Thursday
Tuesday

Dates
827
B/29
a3
9/5
9710
9412
9417
9719
9/24
928
1041
10,3
10/8

10,10

10415

10417

10,22

10724

10/2%

10/31
11,3
117

11/12

11714

11/1%

11/21

11726

11/38
113
123

12/12

Topic
Introduction to EE, ECE 105
Electronic system desiagn
Electronic system design
Circuit analysis
Circuit analysis
Devices: semiconductors
Devices: semiconductors
Devices: optoelectronics
Devices: optoelectronics
Sensors
Biosensing system
Biosensing system
Biosensing system
Fall break
Biosensing system
Midterm
Introduction to Al/ML
Linear algebra
Mo Class
Linear algebra
Meural metworks
Meural networks
Meural networks
Imager
Intreduction to communication systems
Optical communications
Optical communications
Thanksgiving
Optical communications
Quantum computing

Final (2pm - 4pm)

Deliverables

HW1 on circuits released

HW1 on circuits due

HW?2 on devices released

HW2 on devices due

HW3 on system released

HW3 on system due

HW4 on Llinear algebra released

HW4 on linear algebra due
HWS on neural network released

HWS on neural network due

HW& on optical comm released

HWE& on optical comm due

US

University of
Southern California

6 homeworks are on 6 modules

* Circuits

* Devices

* Systems

* Linear algebra

* Neural network

 Communication systems
* Midterm will cover circuits, devices, and
biosensing systems

* Final will cover everything.
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Custom demonstration board for EE 105 USC

University of
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Arduino Nano 33 Electrgr_ﬂcczI devices
BLE lodes
/ Transistors

Circuits

Voltage dividers

0
EEEEEEEEE

PPPPP

Electronic systems
Optical

(= - =1 communication

,,,,, 5] ' RG-Sl system

= e——— DXimeter
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Module 1 on circuits — demo resistive touchscreen USC

University of
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NewLline ~ 115200 baud

Finds the pressed button location automatically
46



Module 2: diodes and transistors USC

University of
SomhemCa.hforma
®coms - o x
B valuel [Evalue?2 Evalue3 [Pvalued Pvalu® Interpolate @D
25
2.0
s Characterize
semiconductor
' diode - how do they
05 ’_/./"f »/.f”‘»fﬂ /H work
0 __/‘/ W-»ﬂ*",—': P
05
16201 16359 16517 16675 16834

m2d @ MNew Line 115200 baud
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Module 2: diodes and transistors USC

University of
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Characterize
@ cows - oo semiconductor
B value1 [value2 gvalue3 value 4 valu/®@  Interpolate @D X transistors _ hOW do
- they work
Current through the
~ transistors
i — Increasing gate
5 L__L_u___um{_-___L_._“_-J__._._.u_h_._w ‘ f t l 1
voltage / opening
faucet in the water
18837 19337 10837 20337 20838 a na logy
m2nmo q m New L 15 d
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Module 3: optical communication USC

University of

SomhemCa.hforma
Lighton
Light off

B coms4
Evalyt 1 Evalue3 pE@valuZ4 p@value5 Pgvalus®  Interpolate m

= O >

1%

55
Duplex serial fiber-optic communication 50
Digital electronic device Signal = Digital electronic device 43 ﬂ Y/ ‘ f H
/
40 ‘ /
35 ‘ l

{ith
/JL ( sm w vhu 1 HL |

69147 169890 171350 172140

m3pd m 115200 baud
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US

Module 3: oximeter

University of
Southern California
0.683 _0.357
< ?"n 348
T ko 0.632 g 0.339
o E
0.607 ~ 0330
— ' . 731e-04  473e-04
@@= pPD E 4.05e-04 EE, 2.64e-04
Measuring :i 7.98e-05 g 5.47e-05 Jilcrd/ D Crpd
Transmission Mode T -2.46e-04 I -1.55e-04 R o /
PD Current 0 500 1000 1500 2000 0 500 1000 1500 2000 "1Cm~/ D Cz"r'
Sample (count) Sample (count)
20mV/625mV =98
B DC = AC B DC = AC T Y — .J
. 20mV/330mV
s S 330 mv -
E E SpOy = 110 — 25« R = 97%
o o
5 5
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o o
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Infrared

50



Module 3: oximeter US

University of
Southern California

| B coma - O *

|
| value 1 value 3 value 5 interpolate (@D m

118,400

iy

| 118200
118,000
117,800

117,600

117,400

117,200
117,000
116,800

116,600
7768 8517 9267 10017 10767

Type Message MNew Line 115200 baud
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lumber: &

Module 4: Machine vision USS;{

Prediction
Run object detection on ?
Nano 33 BLE as a
TML edge device

J Name Trpe Size
desktop 0 AM Configuration settings 1KE
P tinyML_camera_capture 7 10 PM PY File 19Ke

oVv7670

&' windows Powershell X SR

PS G:\My Drive\teaching\eel®5\eel@5-share\devboard\camera_code_v1\Python> python .\tinyML_camera_capture.py
G:\My Drive\teaching\eel®5\eel®5-share\devboard\camera_code_v1\Python\tinyML_camera_capture.py:220: SyntaxWarning: invalid esca
pe sequence '\/’
filename = "".join(i for i in filename if i not in "\/:*?<>|")
Available serial ports:
COMY : USB Serial Device (COMU) [USB VID:PID=2341:805A SER=137AD139129C96E7 LOCATION=1-2:x.0]
Connecting to COM4 at a baud rate of 230400 ...
Connected!

¢

Port: CoOMd —

Baud:  |230400

Connect

[¥ Embiggen view

Resalution: 30x30

Arduino + camera + ML = o
identify objects / letters /
faces / anything

Save Image
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Next lecture: system design
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