

# ECE 105: Introduction to Electrical Engineering

Lecture 2
System design and intro to Arduino
Yasser Khan
Rehan Kapadia

## Breaking down engineering systems





Any signal, for example temperature, touch, brain signal, video inputs, etc.

Temperature sensors, resistive touchscreen, brain electrodes, camera, etc.

Modules in ECE 105: circuits, devices

Industry positions in apple, intel, meta, neuralink, etc

Processing circuits, analog and digital computing, etc.

Modules in ECE 105: biosensor, linear algebra, neural network, optical comm

Industry positions in NVIDIA, Raytheon, Qualcomm, etc

#### Breakdown of hardware and software





#### Equivalence to human body





Signals from other neurons  $R_1$   $R_2$   $R_2$   $R_3$   $R_n$   $R_n$ 

**Biological Neuron** 

**Circuit Model** 



**Artificial Neuron Model** 

#### Oximeter system breakdown





#### Resistive touchscreen system breakdown



Real world



Sensors





Processing



Information

S1 S4 S7 S7

2 S5 S8 S

53 S6 S9 S9

#### Resistive touchscreen system approach





# Connect to Arduino for processing



Get location from the voltage measurement

#### Voltage



Voltage is the pressure from an electrical circuit's power source that pushes charged electrons (current) through a conducting loop, enabling them to do work such as illuminating a light. In brief, **voltage** = **pressure**, **and it is measured in volts (V)**. The term recognizes Italian physicist Alessandro Volta (1745-1827), inventor of the voltaic pile—the forerunner of today's household battery. In electricity's early days, voltage was known as electromotive force (emf).









#### Voltage



#### Flashlight





Schematic Diagram







#### Flow of charge – current

Current is the rate at which electrons flow past a point in a complete electrical circuit. At its most basic, **current = flow**. An **ampere** (AM-pir), or **amp**, is the international unit used for measuring current. It expresses the quantity of electrons (sometimes called "electrical charge") flowing past a point in a circuit over a given time.

A current of 1 ampere means that 1 **coulomb** of electrons—that's 6.24 billion billion (6.24  $\times$  10<sup>18</sup>) electrons—is moving past a single point in a circuit in 1 second.







#### Increasing voltage / increasing water pressure





## Voltage difference





#### Resistance







Resistance is a measure of the opposition to the flow of current in an electrical circuit. It is influenced by the material's properties, length, cross-sectional area, and temperature.



#### Ohm's law







#### Ohm's law



Symbol



#### IV Relationship



#### Resistors



https://www.calculator.net/resistor-calculator.html

#### Resistor color code calculator

Use this calculator to find out the ohm value and tolerance based on resistor color codes.



#### Resistors





#### Going back to the touchscreen





## Connect to Arduino for processing



#### Step 1/a: Breadboarding





The electronic components are inserted in the breadboard to test the prototype circuit



#### Step 1/b: Protoboards





Yasser's first protoboard project (2010)

Protoboards are perforated boards with copper plated holes where wire can be connected and soldered



#### Protoboard soldering and connection













## What is happening here 👺?







## Correct way to hold soldering iron





## Very old way of making printed circuit boards





Ferric chloride etching of copper boards



#### Use of PCB design tools such as eagle / kicad





1. Schematic design



2. Board layout



3. Fabrication

#### Yasser's first electronics project (14 years ago )





Asser Whan, they seld they want to the seld they are to the seld t

After learning PCB design

Before learning PCB design



#### What's remining now?





# Connect to Arduino for processing

#### Arduino





https://www.youtube.com/watch?v=1ENiVwk8idM

#### Arduino Nano 33 BLE

| Microcontroller             | ATmega328P |
|-----------------------------|------------|
| Operating Voltage           | 5V         |
| Input Voltage (recommended) | 7-12V      |
| Input Voltage (limit)       | 6-20V      |
| Digital I/O Pins            | 14         |
| PWM Digital I/O Pins        | 6          |
| Analog Input Pins           | 6          |
| DC Current per I/O Pin      | 20 mA      |
| DC Current for 3.3V Pin     | 50 mA      |
| Flash Memory                | 32 KB      |
| SRAM                        | 2 KB       |
| EEPROM                      | 1 KB       |
| Clock Speed                 | 16 MHz     |



**Figure. 1** Arduino Uno





#### Arduino pinout









#### Installing and running examples on Arduino



- Demo 1: Blink the LED
- Demo 2: Wireless data transfer to a web app