EE105: Introduction to Electrical Engineering

Module 1 Circuit Analysis

Objective:

In this lab, we will systematically analyze the circuits in Module 1 by applying Kirchhoff's Current Law and Ohm's Voltage Law. We will assign variables to voltages at each node and currents through each resistor, then formulate KCL and Ohm's law as a linear system of equations. Then, we will solve this system using Python's symbolic computation toolbox to obtain exact solutions.

<u>Kirchhoff's Current Law</u> (KCL): The algebraic sum of all currents entering and leaving a node (junction) in a circuit equals zero.

<u>Ohm's Voltage Law:</u> The voltage across a resistor is directly proportional to the current flowing through it.

Analysis of Networks on Module 1:

Checkpoint1: Write Kirchhoff's Current Law (KCL) equations it = i1 + i3

...

Checkpoint2: Ohm's Law (Voltage) equations $i1 \times r1 = s1 - s2$

...

Checkpoint3: Solve these equations using SymPy

```
from sympy import symbols, Eq, solve
# Define the variables
i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, it = symbols(
s1, s2, s3, s4, s5, s6, s7, s8, s9 = symbols('s1 s2 s3 s4 s5 s6 s7 s8 s9')
# assign resistance values
# r1, ..., = ...
# Define the equations
# Solve the system of equations
solution = solve(equations, (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11,
i12, it, s2, s3, s4, s5, s6, s7, s8))
solution substituted = {k: v.subs(substitutions) for k, v in
solution.items() }
solution substituted
```

Additional SymPy Syntax:

```
Lt(x, y) # equivalent to x < y - Less than

Le(x, y) # equivalent to x <= y - Less than or equal

Gt(x, y) # equivalent to x > y - Greater than

Ge(x, y) # equivalent to x >= y - Greater than or equal

Ne(x, y) # equivalent to x != y - Not equal
```

Checkpoint4:

a) The first circuit is Network1 of Module1 on your demo board. In the given circuit, calculate the voltage values at each node $(S_1 \text{ to } S_9)$, and the current through each branch $(I_1 \text{ to } I_{12})$.

$$R_1 = R_2 = R_6 = R_7 = R_{11} = R_{12} = 100\Omega$$

 $R_3 = R_4 = R_5 = R_8 = R_9 = R_{10} = 50\Omega$

b) The second circuit is Network2 of Module1 on your demo board.

In the given circuit, calculate the voltage values at each node $(S_1 \text{ to } S_9)$, and the current through each branch $(I_1 \text{ to } I_{12})$.

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_8 = R_9 = R_{10} = R_{11} = R_{12} = 100\Omega$$

