
EE105: Introduction to Electrical Engineering

Module 1 Circuit Analysis

Objective:
In this lab, we will systematically analyze the circuits in Module 1 by applying Kirchhoff's
Current Law and Ohm's Voltage Law. We will assign variables to voltages at each node and
currents through each resistor, then formulate KCL and Ohm's law as a linear system of
equations. Then, we will solve this system using Python's symbolic computation toolbox to
obtain exact solutions.

Kirchhoff's Current Law (KCL): The algebraic sum of all currents entering and leaving a node
(junction) in a circuit equals zero.

I1 + I2 + I3 = I4 + I5

Ohm’s Voltage Law: The voltage across a resistor is directly proportional to the current
flowing through it.

Analysis of Networks on Module 1:

Checkpoint1: Write Kirchhoff's Current Law (KCL) equations
it = i1 + i3
…

Checkpoint2: Ohm's Law (Voltage) equations
i1 × r1 = s1 - s2
…

Checkpoint3: Solve these equations using SymPy
from sympy import symbols, Eq, solve

Define the variables

i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, it = symbols(

 'i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 it'

)

s1, s2, s3, s4, s5, s6, s7, s8, s9 = symbols('s1 s2 s3 s4 s5 s6 s7 s8 s9')

assign resistance values

TODO

r1, ..., = ...

Define the equations

TODO:

equations = [

Eq(it, i1 + i3),

....

]

Substitute s1 = 3.3, s9 = 0

substitutions = {s1: 3.3, s9: 0}

Solve the system of equations

solution = solve(equations, (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11,

i12, it, s2, s3, s4, s5, s6, s7, s8))

Substitute the known values

solution_substituted = {k: v.subs(substitutions) for k, v in

solution.items()}

solution_substituted

Additional SymPy Syntax:
Lt(x, y) # equivalent to x < y - Less than

Le(x, y) # equivalent to x <= y - Less than or equal

Gt(x, y) # equivalent to x > y - Greater than

Ge(x, y) # equivalent to x >= y - Greater than or equal

Ne(x, y) # equivalent to x != y - Not equal

Checkpoint4:

