ECE 105: Introduction to Electrical Engineering Lecture 8 Circuit Problems - Recap Yasser Khan Rehan Kapadia # Equivalent circuits ## Thevenin's equivalent circuit # Thevenin's equivalent circuit # Thevenin's equivalent circuit # Norton's equivalent circuit # Norton's equivalent circuit ## Capacitors ## Capacitors #### Capacitors In Parallel Increases the total capacitance, but limits max. voltage rating to that of smallest rated capacitor. #### Capacitors In Series Increases max voltage rating, but decreases capcitance. ## **Inductors** ## **Inductors** Given the circuit diagram with nodes A, B, and C, each connected to 3V sources as shown. Determine the voltages V_A , V_B , and V_C at the respective nodes with respect to the ground. # Voltage divider # Current divider Given the circuit with six resistors connected to a **3V** voltage source as shown. Find voltages across the resistors (V_A , V_B , V_C , V_D , V_E , and V_F) and current through resistors (I_A , I_B , I_C , I_D , I_E , and I_F). Given the circuit with six resistors connected to a **3V** voltage source as shown. Find voltages across the resistors (V_A , V_B , V_C , V_D , V_E , and V_F) and current through resistors (I_A , I_B , I_C , I_D , I_E , and I_F). Given the circuit diagram with nodes S_1 to S_9 , S_1 is connected to 3.3V and GND (0V). Determine the voltages S_1 to S_9 at the respective nodes with respect to the ground if R_1 to R_{12} = R Given the circuit diagram with nodes S_1 to S_9 , S_1 is connected to 3.3V and GND (0V). Determine the voltages S_1 to S_9 at the respective nodes with respect to the ground if R_1 to R_{12} = R