

ECE 105: Introduction to Electrical Engineering

Lecture 8
Circuit Problems - Recap
Yasser Khan
Rehan Kapadia

Equivalent circuits

Thevenin's equivalent circuit

Thevenin's equivalent circuit

Thevenin's equivalent circuit

Norton's equivalent circuit

Norton's equivalent circuit

Capacitors

Capacitors

Capacitors In Parallel

Increases the total capacitance, but limits max. voltage rating to that of smallest rated capacitor.

Capacitors In Series

Increases max voltage rating, but decreases capcitance.

Inductors

Inductors

Given the circuit diagram with nodes A, B, and C, each connected to 3V sources as shown. Determine the voltages V_A , V_B , and V_C at the respective nodes with respect to the ground.

Voltage divider

Current divider

Given the circuit with six resistors connected to a **3V** voltage source as shown. Find voltages across the resistors (V_A , V_B , V_C , V_D , V_E , and V_F) and current through resistors (I_A , I_B , I_C , I_D , I_E , and I_F).

Given the circuit with six resistors connected to a **3V** voltage source as shown. Find voltages across the resistors (V_A , V_B , V_C , V_D , V_E , and V_F) and current through resistors (I_A , I_B , I_C , I_D , I_E , and I_F).

Given the circuit diagram with nodes S_1 to S_9 , S_1 is connected to 3.3V and GND (0V). Determine the voltages S_1 to S_9 at the respective nodes with respect to the ground if R_1 to R_{12} = R

Given the circuit diagram with nodes S_1 to S_9 , S_1 is connected to 3.3V and GND (0V). Determine the voltages S_1 to S_9 at the respective nodes with respect to the ground if R_1 to R_{12} = R

