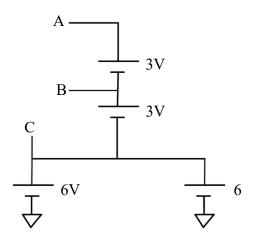
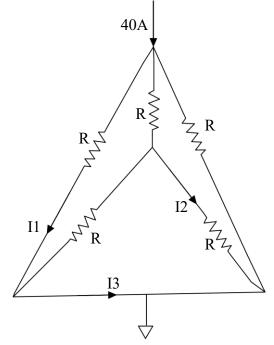
Name:	USC ID#:
I hereby affirm that all the online nor taken assistance	answers below are my own. I have neither searched e from any external entity.
	Student Signature Above

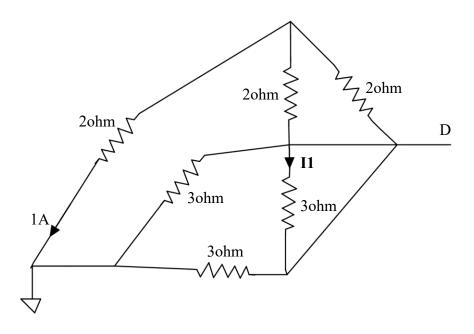

EE105 – Fall 2025 Practice Midterm

Time Limit: 2 hours

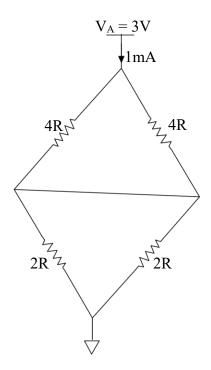
Section A (25 points)


Question 1 (4 points)

Given the circuit diagram with nodes A, B, and C, each connected to either 3V or 6V sources as shown. Determine the voltages V_A , V_B , and V_C at the respective nodes with respect to the ground.


Question 2 (6 points)

Given the circuit below, determine the current values I1, I2, I3.


Question 3(6 points)

Given the circuit with six resistors as shown. Find voltage at node D (V_D) and current I1.

Question 4 (6 points)

The voltage at node A with respect ground is 3V and total current going through the circuit is 1mA. Determine resistance value R.

Name:	USC ID#:

Question 5 (6 points)

Complete the following python function.

```
def create_and_print_evens(num_elements, lower_limit, upper_limit):
    """
    Creates a random integer array and then prints its even numbers.

Args:
        num_elements: The number of integers to create in the array.
        lower_limit: The lowest possible value for the random integers (inclusive).
        upper_limit: The highest possible value for the random integers (inclusive).
    """
# Step 1: Create a NumPy array with 'num_elements' random integers
# that are between 'lower_limit' and 'upper_limit'.
# YOUR CODE HERE
```

```
# Step 2: Now, loop through the random array you just created.
# If a number is even, print it.
# YOUR CODE HERE
```

Question 6 (6 points)

Given the three python lists:

```
a = [1, 2, 3]
b = [-1, 1, 2]
c = a + b
```

determine the following values:

```
c = a[-2:1] = a[3] =
```

Name:	USC ID#:

Question 7 (6 points)

Look at the following code has been uploaded to an Arduino.

```
void setup() {
   pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
   digitalWrite(LED_BUILTIN, HIGH);
   delay(2000);
   digitalWrite(LED_BUILTIN, LOW);
   delay(2000);
}
```

- a) How many times does the *void setup()* function run?
- b) In each cycle, how long does the LED stay ON?
- c) Explain relationship between delay time and frequency of LED blinking.
- d) How should you modify the code if the LED blinking frequency needs to be 2Hz?

Question 8 (8 points)

A microcontroller uses a 12-bit ADC with a 5V reference voltage. The ADC outputs digital values in the range 0–4095 (since it is 12-bit).

- a) What is the range of the raw ADC output?
- b) Derive the formula for converting the raw ADC output into the corresponding analog voltage.
- c) Calculate the ADC conversion factor (the multiplier needed to convert the raw ADC value to voltage).
- d) If the ADC reading is 2175, compute the actual voltage.

Question 9 (6 points)

Draw the CMOS inverter and explain it's operation to fill up the following table

Vin	Vout
VDD	
0	

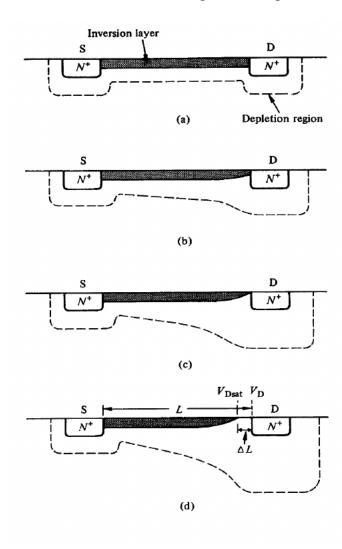
Name:	USC ID#:
Question 10 (8 points)	

Draw the cross section of p-channel and n-channel MOSFETs. Label each layer and terminal. What gate bias will be need to turn on the p-channel and n-channel MOSFETs?

Name:	

USC ID#: _____

Question 11 (8 points)


Consider an n-channel MOSFET with the following parameters:

- Mobility–oxide product: $\mu C_{ox} = 200 \ \mu A/V^2$
- Width/Length ratio: W/L = 10
- Threshold voltage: $V_T = 1.0 \text{ V}$
- a) For V_{GS} = 2.5 V and V_{DS} = 1.0 V:
 - i) Determine whether the MOSFET operates in the linear or saturation region.
 - ii) Calculate the drain current I_D .
- b) For V_{GS} = 4.0 V and V_{DS} = 5.0 V:
 - i) Check the region of operation.
 - ii) Calculate I_D.
- c) Compare the results from (1) and (2) and briefly explain why ID changes with operating region.

Name:	USC ID#:

Question 12 (8 points)

Briefly explain what happens at each stage of the following figure. Discuss V_G , V_T relationship, V_{DS} , and I_D values for each of the four stages. Define pinch-off and show how $V_{DS,Sat}$ is related to V_{GS} and V_T .

