

ECE 105: Introduction to Electrical Engineering

Lecture 5

Device 1

Yasser Khan

Rehan Kapadia

The First Transistor

1956 Physics Nobel Prize

"for their researches on semiconductors and their discovery of the transistor effect"

William Bradford Shockley

O 1/3 of the prize

USA

Semiconductor Laboratory of Beckman Instruments, Inc. Mountain View, CA, USA

John Bardeen

O 1/3 of the prize

USA

University of Illinois Urbana, IL, USA

Walter Houser Brattain

O 1/3 of the prize

USA

Bell Telephone Laboratories Murray Hill, NJ, USA

Invention of the Field-Effect Transistor

In 1935, a British patent was issued to Oskar Heil. A working MOSFET was not demonstrated until 1955.

 An electric field is applied normal to the surface of the semiconductor (by applying a voltage to an overlying electrode), to modulate the conductance of the semiconductor

→ Modulate drift current flowing between 2 contacts ("source" and "drain") by varying the voltage on the "gate" electrode

N-channel MOSFET:

Introduction to the MOSFET

Basic MOSFET structure and IV characteristics

What is desirable: large I_{on} , small I_{off}

Introduction to the MOSFET

Two ways of representing a MOSFET:

N-channel vs. P-channel

NMOS

- For current to flow, V_{GS} > V_T
- Enhancement mode: V_⊤ > 0
- Depletion mode: V_T < 0
 - Transistor is ON when V_G=0V

PMOS

- For current to flow, V_{GS} < V_T
- Enhancement mode: V_T < 0
- Depletion mode: $V_T > 0$
 - Transistor is ON when V_G=0V

Complementary MOSFETs (CMOS)

When $V_g = V_{dd}$, the NFET is on and the PFET is off. When $V_g = 0$, the PFET is on and the NFET is off.

CMOS (Complementary MOS) Inverter

Qualitative discussion: n-MOSFET

 $V_{\rm G} > V_{\rm T}; V_{\rm DS} \text{ small,} > 0$ $I_{\rm D}$ increases with $V_{\rm DS}$, but rate of increase decreases.

 $V_{\rm G} > V_T$; $V_{\rm DS} > V_{\rm DS,sat}$ $I_{\rm D}$ does not increase further, saturation region. $I_{\rm D}$ - $V_{\rm DS}$ characteristics expected from a long channel ($\Delta L << L$) MOSFET (n-channel), for various values of $V_{\rm G}$

I_D - V_{DS} characteristics for n-MOSFET

Quantitative I_D - V_{DS} Relationships – 1^{st} attempt "Square Law"

$$I_{\rm D} = \frac{Z\mu_{\rm n}}{L} C_{\rm ox} \left[(V_{\rm G} - V_{\rm T}) V_{\rm DS} - \frac{V_{\rm DS}^2}{2} \right] \quad 0 < V_{\rm DS} < V_{\rm DS,sat} \; ; \quad V_{\rm G} > V_{\rm T}$$

 $I_{\rm D}$ will increase as $V_{\rm DS}$ is increased, but when $V_{\rm G} - V_{\rm DS} = V_{\rm T}$, pinchoff occurs, and current saturates when $V_{\rm DS}$ is increased further. This value of $V_{\rm DS}$ is called $V_{\rm DS,sat}$. i.e., $V_{\rm DS,sat} = V_{\rm G} - V_{\rm T}$ and the current when $V_{\rm DS} = V_{\rm DS,sat}$ is called $I_{\rm DS,sat}$.

$$I_{\text{D,sat}} = \frac{Z \mu C_{\text{ox}}}{2L} (V_{\text{G}} - V_{\text{T}})^2$$
 $V_{\text{D}} > V_{\text{DS,sat}}$; $V_{\text{G}} > V_{\text{T}}$

Here, C_{ox} is the oxide capacitance per unit area, $C_{\text{ox}} = \varepsilon_{\text{ox}} / x_{\text{ox}}$

P-MOSFET N-MOSFET IV Characteristics

The PMOS IV is qualitatively similar to the NMOS IV, but the current is about half as large. Why?

Threshold and Subthreshold

Subthreshold Current

• The leakage current that flows at $V_g < V_t$ is called the subthreshold current. Previously we had assumed that current is zero, but in reality that's not the case.

90nm technology.
Gate length: 45nm for NMOS, 50nm for PMOS

• The current at $V_{gs}=0$ and $V_{ds}=V_{dd}$ is called I_{off} .