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How can we create tunable resistors? ysg
Southern California

R =pL/A

* We have three options, change length, change area,
or change resistivity

* Semiconductors allow us to electromagnetically and
chemically control resistivity



How do semiconductors allow us to tune the resistivity? USC
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* By allowing us to tune the density e
of charge carriers!
* In metals, the density of charge . o F Ui Conductors
carriers is ~ 1022-10%3/cm? g N
* In insulators, the charge density is § w0 s
~10‘57/Cm3 ‘% 0 L e Semiconductors
. p:R% (Resistivity ohm-cm)
* In semiconductors, the charge | |
M o= ) (Conductivity mho/cm) 10° - njzﬁgrbir:e
density can be controlled from L .
~1019/cm3 - 1029/cm?3 e .




What can we do with an element that has Qécf
tunable or non-linear resistance?
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* Create a switch
* Digital logic

* Amplify a signal
* Analog circuits

 Rectify an AC voltage
* Power circuits

* Sensing, power generation, light, etc etc



Why does changing the carrier density USC
change the resistivity?
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* Let’s revisit R = pL/A

* [f | take a material and magically stuff additional mobile electrons
Into it, then the resistivity would decrease.

* If | remove additional mobile electrons from it, then the resistivity
would increase.

* So if | had a material which allows me to change the mobile charge
density, then | can tune the resistivity of that material



What'’s after resistors, capacitors, and inductors USC
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Diodes/LEDs Microchips Solar cells

* Each device and circuit allows us to carry out specific functionalities



What are semiconductors USC
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Forman nurmeral
*/ gives valence

1 Periodic Table [ . .. 1.[k
: of the Elements o
; e ve v e Ar
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4 5;{&
G EIE:III'I

Elements: Si1, Ge, C
Binary: GaAs, InSb, SiC, CdSe, etc.
Ternary+: AlGaAs, InGaAs, etc.



Silicon - the workhorse of electronics USC
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Group
classiﬁitinn Orbitals FHE?FGEnti:d
Atomic g2, 252, 2p®, 3s2, 3p? cubic crys
IV number " _—" structure
Symbol N "'/ (diamond structure)
Atomic S1 14
welght >~
[~
28.086 4 valence
B electrons /
Silicon ™~ Covalent T~ Siatom
~ Name bond



Electrons and Holes in Semiconductors USC
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Silicon Crystal Structure

 Unit cell of silicon crystal is
cubic.

* Each Si atom has 4 nearest
neighbors.




Bond Model of Electrons and Holes (Intrinsic Si)
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electron, a hole 1s also created.

® Silicon crystal in

a two-dimensional
representation.
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Dopants in Silicon USC
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. Si. Si. Si. - Si. Si. Si.
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+ Sie ASe Si. e Si*¥e B« Sie
. Si. Si. Si. . Si. Si. Si.
N-type Si P-type Si

® As (Arsenic), a Group V element, introduces conduction electrons and creates

N-type silicon, and is called a donor.
® B (Boron), a Group III element, introduces holes and creates P-type silicon,

and is called an acceptor.

e Donors and acceptors are known as dopants.



GaAs, I11-V Compound Semiconductors, and Their Dopants

%
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Ga. As | Ga.
As. Ga . As.
Ga. As . Ga.

® GaAs has the same crystal structure as Si.
® GaAs, GaP, GaN are III-V compound semiconductors, important for

optoelectronics.
® Which group of elements are candidates for donors? acceptors?
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Energy Band Diagram USC
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A

Conduction band C. £
A

E, Band gap

¥ N E,

S S A

v Valence band

o Energy band diagram shows the bottom edge of conduction band,
E. , and top edge of valence band, £ .

e £.and E, are separated by the band gap energy, E, .



Measuring the Band Gap Energy by Light Absorption

electron

photons

—_—

photon energy: hv > E,

O
hole

* E, can be determined from the minimum energy (2 v) of

photons that are absorbed by the semiconductor.

Bandgap energies of selected semiconductors

Material

PbTe

Ge

Si

GaAs

GaP

Diamond

E, (eV)

0.31

0.67

1.12

1.42

2.25

6.0
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Semiconductors, Insulators, and Conductors USC
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E.
Top of
conduction band
E;~=9¢eV
E c % empty
E.=1.1eV i flld ~~~~~~~

j Ev V Ev \‘ll/ 111€ Ec
Si (Semiconductor) SiO2 (Insulator) Conductor

® Totally filled bands and totally empty bands do not allow
current flow. (Just as there is no motion of liquid in a
totally filled or totally empty bottle.)

® Metal conduction band is half-filled.

® Semiconductors have lower E,'s than insulators and can be
doped.



What is a diode USC
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I Ge S1
20mA - diode diode

10mA -+

Anode - Cathode 0.5V A% V

* A diode 1s a device that exhibits ‘rectifying’ behavior

* (Can be made from a physical junction between an n-type semiconductor and a p-
type semiconductor

* Can also be made from a physical junction between a metal and semiconductor
(not discussed here)
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Reverse biasing a diode

Reverse-Biased ("Closed Door")

Electrons
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Diode characterization USC
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Forward biasing a diode US
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Forward-Biased ("Open Door”)

Hole flow

Holes

anode cathode

Electron flow

e

Conventional current flow
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Water analogy

Diode Water Analogy Diode IV Curve

J{r \I '_ “J
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Forward Biasing Reverse Biasing b Meltdown
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[ +I 2V | K I 2V sSpring 'ﬂiw current
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— M &l - == i & "
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How do we figure out the behavior?

Define the Write the Solve the Simplify the
physical system differential differential results for
equations equations relevant
conditions
Materials Physics, Math, Computing Engineering
Science, Chemistry
Chemistry,
Physics, etc
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Solving for diode current equations USC
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ﬂ?:ﬂpi‘! — ﬂJt:l."i — ﬂJU_'l'i
d* Dy, L,

P

From the minority carrier diffusion equation:

We have the following boundary conditions:
Ap, (-Tnj =D, (E.qz-'_i_:,'fr ~1) Ap (e0) =0

For simplicity, we will develop a new coordinate system:

NEW: % gm0 O—p X

Then, the solution is of the form:

Ap, (x')= Ae" " + A"



Solving for diode current equations USC
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—x'/L

Ap (x') = Alef’:‘r"” + 4de’

7

From the x = = boundary condition, A, = 0.
From the x = x,, boundary condition, 4 =p, (e —1)

ThEI‘EfDrE, &pn {:Tl) _ pﬁa{:é:g{:_i (kT I)E_IIT.LP 5 ¥'>0

Similarly, we can derive

An,(x")=n, (e”+™ —1e™ ', x>0



Solving for diode current equations USC

University of
Southem California

* Current density J = J(x) + J,(X)

J (x)=qun€+qD. M = qu n€ +gp LA
ax Ay

d( fﬁp)

d
J,(x)=qu,p€& —qD, dp—guppf’—qﬂ

* J Is constant throughout the diode, but J,(x)
and J,(x) vary with position



Solving for diode current equations USC
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dAn (x" D - ..
E'Eide: Jﬂ :_'?DH P’( ) o n 20 (EQIA_J..&'T _l)g—_‘( I,-"j'_'.”
d-r” L?i‘
d: X' ) .
nh-side: ”'rp = _gDp Apﬂ(,T i = g__pw(egmfﬂ —1e s
dx L,
J=J 7t Jp =t Jp o




ldeal Diode Current Equation

qV

2 DH D p aVa /5T _ — 1T —
JZW{LNAJFLNJ(E D =y (ekT 1)

n P

* This equation describes the behavior of an ideal diode
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Non-Ideal Diode Current Equation USC
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Diode IV Curve
I
gy s Meltdown
v
q V Pl Leakage ¥
I _kT 1 | curlrent

. 0.4V Schottky
7 Meltdown 0.2V Gerrmanium
| ltypical values)

A | &
: 06V Silicon

"

* This equation partially describes the behavior of a non-ideal
diode
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