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Pulse oximetry
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* Pulse oximetry measures blood oxygenation. Using
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Transmission vs. reflectance oximetry
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« AC signal is the highest at the forehead for both Red
and NIR channels.

« Arms provide mid-range AC amplitude, while signal
strength is low in the legs and chest area.

« Forehead is the best location for reflectance pulse
oximetry.
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« Transmission-mode pulse oximetry is
limited only to tissues that can be
transilluminated, such as the earlobes and
the fingers.

 If reflected light is used as the signal, the
sensor can be used beyond the
conventional sensing locations.
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Oximeter readout circuit
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Calculating oxygen saturation USC
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Pulse oximeter basics USC
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Figure 4.6 The normalization of the signals. The transmitted light from the red LED (R) and Ratio of normalized absorbances
from the infrared LED (IR) is divided by its individual DC component. Thus, both normalized light
intensities have the same magnitude during diastole. The normalized signals determine the basis for QS
the calculation of the arterial oxygen saturation.

Figure 4.7 Calibration curves for pulse oximeters: the solid line is the theoretical curve by Beer’s
law and the dashed line is the empirical curve. The difference between these curves is due mainly
to light scattering effects. This empirical calibration curve is derived by a second order polynomial.
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AFE - MAX30102

Click here for production stafus of specific part numbers.

MAX30102

General Description

The MAX30102 1s an integrated pulse oximetry and
heart-rate monitor module. It includes internal LEDs,
photodetectors, optical elements, and low-noise electronics
with ambient light rejection. The MAX30102 provides a
complete system solution to ease the design-in process
for mobile and wearable devices.

The MAX30102 operates on a single 1.8V power supply
and a separate 3.3V power supply for the internal LEDs.
Communication is through a standard 12C-compatible
interface. The module can be shut down through software
with zero standby cumrent, allowing the power rails to
remain powered at all times.

Applications

Wearable Devices
Fitness Assistant Devices
Smartphones

Tablets

High-Sensitivity Pulse Oximeter and

Heart-Rate Sensor for Wearable Health

Benefits and Features

o Heart-Rate Monitor and Pulse Oximeter Sensor in
LED Reflective Solution

¢ Tiny 5.6mm x 3.3mm x 1.55mm 14-Pin Optical Module
+ Integrated Cover Glass for Optimal, Robust
Performance

¢ Ultra-Low Power Operation for Mobile Devices
» Programmable Sample Rate and LED Current for
Power Savings
+ Low-Power Heart-Rate Monitor (< 1TmW)
+ Ultra-Low Shutdown Current (0.7pA, typ)

# Fast Data Output Capability
+ High Sample Rates

Robust Motion Artifact Resilience
+ High SNR

-40°C to +85°C Operating Temperature Range

Ordering Information appears at end of data sheet.
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System design

System Diagram
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LEDs
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LED - PD spectrum USS?
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Pin Description

PIN NAME FUNCTION
_:,,' g ’ 154 MN.C. Mo Connection. Connect to PCB pad for mechanical stability. ( u;ﬂ.y} Ul N
2 SCL 12C Clock Input
3 sDA [2C Data, Bidirectional (Open-Drain) \&} GND
4 PGND Power Ground of the LED Dnver Blocks \@/ SCL
9 ViED+ LED Power Supply {anode connection). Use a bypass capacitor to PGMND for best
10 Vi EDs performance. \@,’S DA
1 Voo Analog Power Supply Input. Use a bypass capacitor to GND for best performance. \
12 GND Analog Ground \@W INT
13 INT Active-Low Interrupt (Open-Drain). Connect to an external voltage with a pullup resistor. 7
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How does the AFE work USC
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Functional Diagram

WLED+ Voo
r-r—-—-—=-f1T-=-------=- - - -"---"--"—---"-=-"=-—-—-"=-—-=-=-=- |
| — 4 |
: Y . MUSENTUSHT | poa| | pema .
| {EE -5 VEELESR ¥ oc | | DAL | | [ | e IEBP.
3 “k S ADC ] FLTER Eé"';':'_ﬁ COMMUNICATION E
s6onm | Eaonm m— o] T
: |
|
I * * '
| OSCILLATOR |— |  LED DRIVERS |
I | MAXI0102 |
I L .
S S O S E |
N.C N.C GND PGND

15



Data capture USC

University of
Southern California

Timing in SpO, Mode

The internal FIFO stores up to 32 samples, so that the
system processor does not need to read the data after
every sample. The temperature does not need to be
sampled very often—once a second or every few seconds
should be sufficient.
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Figure 4. Timing for Data Acquisition and Communication When in 5p0s Mode
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Data capture

Sample 2: IR Channel
(Byte 1-3)

Sample 2: RED Channel
(Byte 1-3)

Sample 1: IR Channel

MEWER
SAMPLES

(Byte 1-3)

Sample 1: RED Channel
(Byte 1-3)

OLDER SAMPLES

Figure 2. Graphical Representation of the FIFO Data Register. It shows IR and Red in 5p0; Mode.

Bits 4:2: SpO3 Sample Rate Control

These bits define the effective sampling rate with one sample consisting of one IR pulse/conversion and one Red pulse/

conversion.

The sample rate and pulse width are related in that the sample rate sets an upper bound on the pulse width time. If the user
selects a sample rate that is too high for the selected LED_PW setting, the highest possible sample rate is programmed

instead into the register.

Table 6. SpO2 Sample Rate Control

SPO2_SR[2:0] SAMPLES PER SECOND

000 50

001 100
010 200
011 400
100 800
101 1000
110 1600
m 3200

See Table 11 and Table 12 for Pulse Width vs. Sample Rate information.
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Keep your finger gently on the sensor

| \ Figure 1
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Time domain to frequency domain USC
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* The Fourier transform is an analysis process, decomposing a
complex-valued function into its constituent frequencies and their
amplitudes.
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Time domain to frequency domain USC
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* The Fourier transform is an analysis process, decomposing a complex-valued
function into its constituent frequencies and their amplitudes.
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Time domain to frequency domain
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What makes a square wave USC
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Constructed Square Wave
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Filters

complex signal
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Filters
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Going back to the

PPG data collected
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Smoothing
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Drift correction
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Amplitude

115400

115300

115200

115100

115000

114900

114800

Amplitude
o

100700

100600

100500

s
£ 100400

100300

100200

100

Amplitude

Original PPG (Red)

Time (s}

Baseline Corrected PPG (Red}

0 200 400 600 800 1000
Time (s}

Griginal PPG {IR)

Time (s)
Baseline Corrected PPG (IR}

0 200 400 600 800 1000

Tima fel

US

University of
Southern California

28



Peak detection US
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Heart rate US
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Using single component to find heart rate
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4 components in the PPG signal - signal loss
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Taking all the components provides the original signal
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