EE 105 Fall 2025

Homework 5 – upload to grade scope

(Due November 25, before class, late submission will incur 20% points/day penalty)

Instructions: Perform the following tasks based on the circuits and concepts discussed in class. Be sure to show all work where applicable.

1) Perceptron Model Calculation (Hand Calculation)

- Given a simple perceptron with weights w1 = 2, w2 = -3, w3 = 1.5 and input values x1 = 1, x2 = 0, x3 = 1, calculate the output assuming the threshold is 0. Use the perceptron rule:
 - o **Output** = 1 if the weighted sum is greater than the threshold, otherwise **0**.

2) Activation Functions (Hand Calculation)

- For a neuron with input x = 1.0 and weight w = 2.5, calculate the output using:
 - Sigmoid Activation Function:
 - ReLU Activation Function:
 - o Tanh Activation Function:

3) Design a Neural Network Topology (Conceptual)

- Design a neural network to classify whether a person should attend a music festival. The inputs are:
 - o Weather forecast (good or bad)
 - o Availability of tickets (yes or no)
 - o Friends attending (yes or no)
- Specify the number of inputs, weights, activation function, and output for this simple model.

4) Smallest Neural Network for MNIST Classification (Python Implementation)

- Your task is to design the smallest possible neural network with a single hidden layer that can classify the MNIST handwritten digits with at least 85% accuracy for the MNIST TEST dataset.
- Calculate the number of floating point operations (meaning number of multiplications and additions) your neural networks requires to generate a single output. We have gone over this in class, so use the same approach we did there.

Requirements:

- Use python based on the code developed in the labs to implement your model.
- The network should contain a single hidden layer and output predictions for 10 classes (digits 0-9).
- The network should be trained on the **MNIST** dataset.
- Report the architecture you used, including the size of the hidden layer, what activation functions, and the achieved accuracy.