

ECE 105: Introduction to Electrical Engineering

Lecture 16

Curve Fitting

Yasser Khan

Rehan Kapadia

Outline

• **Objective**: Understand how to fit data using linear and non-linear techniques and gain an introductory understanding of neural networks.

Topics Covered:

- Linear Curve Fitting
- Non-Linear Curve Fitting

Linear Regression

- Linear Curve Fitting
- **Definition**: Approximating a set of data points with a straight line.
- Theory:
 - Least Squares Method: Find the line of best fit by minimizing the sum of squared residuals.
 - Equation: y = mx + b, where m is the slope and b is the intercept.

Steps to Perform Linear Curve Fitting:

- Organize data points.
- Calculate slope and intercept using least squares.
- Plot data with the fitted line.

Examples:

• Fit data points representing the relationship between temperature and energy consumption.

Applications:

Predictive modeling in economics and engineering.

Math Behind Linear Regression

- **Definition**: Linear curve fitting is the process of finding the best-fit line that approximates a set of data points.
- **Goal**: Minimize the distance between the observed data points and the fitted line.
- Equation of a Line: y = mx + b
 - **m**: Slope (rate of change)
 - b: Intercept (value when x = 0)

Math Behind Linear Regression

- Linear Regression Equation: y = mx + b
 - Dependent Variable (y): The value we want to predict.
 - Independent Variable (x): The value that influences y.
- Least Squares Method:
 - Objective: Minimize the sum of squared residuals.
 - Residual: The difference between the observed value and the value predicted by the model.
 - Mathematical Representation: Minimize ∑(y_i (mx_i + b))² for all data points i.

Math Behind Linear Regression

Slope Formula (m):

- $m = \sum ((x_i \bar{x})(y_i \hat{y})) / \sum (x_i \bar{x})^2$
- $\bar{\mathbf{x}}$: Mean of the x-values
- **ŷ**: Mean of the y-values

Intercept Formula (b):

- $b = \hat{y} m\hat{x}$
- Finding the Line of Best Fit:
 - Once **m** and **b** are known, substitute back into **y** = **mx** + **b**.

Finding the Best Fit

- **Given Data Points**: (1, 2), (2, 3), (3, 5), (4, 4)
- **Step 1**: Calculate $\bar{\mathbf{x}}$ and $\hat{\mathbf{y}}$:

•
$$\bar{x} = (1 + 2 + 3 + 4) / 4 = 2.5$$

•
$$\hat{y} = (2 + 3 + 5 + 4) / 4 = 3.5$$

- **Step 2**: Calculate **m** and **b**:
 - m = 0.8
 - b = 1.5
- **Step 3**: Line Equation:
 - y = 0.8x + 1.5

Finding the Best Fit

- **Given Data Points**: (1, 2), (2, 3), (3, 5), (4, 4)
- **Step 1**: Calculate $\bar{\mathbf{x}}$ and $\hat{\mathbf{y}}$:

•
$$\bar{x} = (1 + 2 + 3 + 4) / 4 = 2.5$$

•
$$\hat{y} = (2 + 3 + 5 + 4) / 4 = 3.5$$

- Step 2: Calculate m and b:
 - m = 0.8
 - b = 1.5
- **Step 3**: Line Equation:
 - y = 0.8x + 1.5

Non-linear Regression

- Non-Linear Curve Fitting
- Definition: Finding a curve that best fits a set of data points when a straight line is not appropriate.
- Theory:
 - Polynomial Fitting: Use higher-order polynomials (y = a + bx + cx² + ...).
 - Exponential and Logarithmic Models: Fit data using non-linear functions like y = a * e^(bx) or y = a * log(bx).
 - **Optimization Methods**: Use gradient descent or numerical optimization to find the best fit.

Steps to Perform Non-Linear Fitting:

- Choose an appropriate model based on data behavior.
- Use iterative methods to minimize the error.

• Examples:

- Fit a sine curve to periodic data such as seasonal temperature variations.
- Applications:
 - Any space where the relationships are non-linear, which is pretty much most areas

Common types of non-linear regresion

Model Types:

- Polynomial Fitting: Use higher-order polynomials (y = a + bx + cx² + ...).
- Exponential Models: y = a * e^(bx), commonly used for growth models.
- Logarithmic Models: y = a * log(bx), often used for decay or diminishing returns.

General Approach:

- Choose an appropriate model type.
- Use **iterative methods** (e.g., gradient descent) to minimize the error.
- Unlike linear regression, there is no closed-form solution.

Minimizing the error

- **Objective**: Minimize the sum of squared differences between observed values and predicted values.
 - Mathematical Representation: Minimize $\sum (y_i f(x_i, \theta))^2$, where $f(x_i, \theta)$ is the non-linear model with parameters θ .

Gradient Descent:

- An iterative optimization algorithm used to find the parameters that minimize the error function.
- Adjusts parameters by moving in the direction of the negative gradient.

Let's look at an example

- Assume we have a dataset which is a quadratic function with some noise
- Split the dataset into training data and testing data
- Fit your model using training data, and then test your model using testing data

Let's look at an example

 Assume we have a dataset which is a quadratic function with some noise

Let's look at an example

 We can see the error during the iterations for both the training set and the testing set

