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* Objective: Understand how to fit data using linear and non-linear
techniques and gain an introductory understanding of neural
networks.

* Topics Covered:
* Linear Curve Fitting
* Non-Linear Curve Fitting
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Linear Curve Fitting
Definition: Approximating a set of data points with a straight line.
Theory:

« Least Squares Method: Find the line of best fit by minimizing the sum of squared residuals.
* Equation: y = mx + b, where m is the slope and b is the intercept.

Steps to Perform Linear Curve Fitting:
« Organize data points.
« C(Calculate slope and intercept using least squares.
* Plot data with the fitted line.

Examples:

« Fit data points representing the relationship between temperature and energy consumption.
 Applications:
* Predictive modeling in economics and engineering.
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 Definition: Linear curve fitting is the process of finding the best-
fit line that approximates a set of data points.

* Goal: Minimize the distance between the observed data points
and the fitted line.

* Equation of a Line:y=mx +b
* m: Slope (rate of change)
* b: Intercept (value when x = 0)
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* Linear Regression Equation:y=mx +b
* Dependent Variable (y): The value we want to predict.
* Independent Variable (x): The value that influencesy.

 Least Squares Method:
* Objective: Minimize the sum of squared residuals.

 Residual: The difference between the observed value and the value
predicted by the model.

« Mathematical Representation: Minimize ¥ (yi - (mxi + b))? for all data
points I.
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* Slope Formula (m):
+ m=F((xi- X)(yi- ¥) / X(xi - X)

* X: Mean of the x-values
* y: Mean of the y-values

* Intercept Formula (b):
* b=y-mx

 Finding the Line of Best Fit:
 Once mand b are known, substitute back into y = mx + b.
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* Given Data Points: (1, 2), (2, 3), (3, 5), (4, 4)
 Step 1: Calculate x and y:

Least Squares Fit

° i=(1+2+3+4)/4=2.5 504 e Data Points °
o V - (2 + 3 + 5 + 4) /4 - 3.5 — —— Least Squares Fit: y = 0.80x + 1.50
* Step 2: Calculate m and b:
* m=0.8 ’
° b — 1.5 > 3.5 1
 Step 3: Line Equation: 30- .
- y=0.8x+1.5 el
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* Given Data Points: (1, 2), (2, 3), (3, 5), (4, 4)

 Step 1: Calculate x and y:
e x=(1+2+3+4)/4=25
*y=(2+3+5+4)/4=35 N "

* Step 2: Calculate m and b:
* m=0.8
- b=1.5

 Step 3: Line Equation:

- y=0.8x+1.5

1.0

0.5
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* Non-Linear Curve Fitting

 Definition: Finding a curve that best fits a set of data points when a straight line is not
appropriate.

* Theory:

 Polynomial Fitting: Use higher-order polynomials (y = a + bx + cx? +...).

. IlExp(on()entlal and Logarithmic Models: Fit data using non-linear functlons likey=a*e”(bx)ory=a*

og(bx

« Optimization Methods: Use gradient descent or numerical optimization to find the best fit.
 Steps to Perform Non-Linear Fitting:

« Choose an appropriate model based on data behavior.

» Use iterative methods to minimize the error.

* Examples:
« Fit a sine curve to periodic data such as seasonal temperature variations.

« Applications:
* Any space where the relationships are non-linear, which is pretty much most areas
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* Model Types:
 Polynomial Fitting: Use higher-order polynomials (y = a + bx + cx? +...).
« Exponential Models:y =a * e*(bx), commonly used for growth models.
* Logarithmic Models: y = a * log(bx), often used for decay or diminishing

returns.
* General Approach:

 Choose an appropriate model type.
« Use iterative methods (e.g., gradient descent) to minimize the error.
* Unlike linear regression, there is no closed-form solution.
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* Objective: Minimize the sum of squared differences between
observed values and predicted values.

- Mathematical Representation: Minimize ¥ (yi - f(xi, 8))2, where f(x;, 0) is
the non-linear model with parameters 6.
 Gradient Descent:

* An iterative optimization algorithm used to find the parameters that
minimize the error function.

» Adjusts parameters by moving in the direction of the negative gradient.
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Let’s look at an example

 Assume we have a dataset
which is a quadratic
function with some noise

 Split the dataset into
training data and testing
data

* Fit your model using
training data, and then
test your model using
testing data
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Quadratic Dataset with Training and Testing Split
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Quadratic Dataset with Polynomial Fit (Training)

140 A

* Assume we have a & S menn
dataset which is a it ity
quadratic function with

some noise

- 60

40 -

20 SR

0 To @ o : P @
. [ ] 0 ....O
o © © ® Q Q
[
=20 ®
-10.0 =75 -=5.0 -2.5 0.0 2.5 5.0 7D 10.0
X

13



Let’s look at an example USC

University of
Southern California

Error vs Iteration During Gradient Descent (Training and Testing)

* We can see the error it kMl
during the iterations for
both the training set and ...
the testing set : L
o L """""" R
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