
ECE 105: Introduction to
Electrical Engineering

Lecture 17
Neural Networks

Yasser Khan
Rehan Kapadia

Timeframe

• 1943: McCulloch–Pitts “neuron”
• Started the field

• 1962: Rosenblatt’s perceptron
• Learned its own weight values; convergence proof

• 1969: Minsky & Papert book on perceptrons
• Proved limitations of single-layer perceptron networks

• 1982: Hopfield and convergence in symmetric networks
• Introduced energy-function concept

• 1986: Backpropagation of errors
• Method for training multilayer networks

• Present: Probabilistic interpretations, Bayesian and spiking networks

Why Deep Neural Networks?

• Deep neural networks are excellent for certain classes of problems, such as image recognition,
speech recognition etc.

• Importantly, as the amount of data scales, the performance of deep learning continues to improve

Image from Medium: “Review of Deep Learning Algorithms for Object Detection”

What’s so deep about Deep Neural Networks?

• The “deep” refers to the number of layers of ‘units’ between the input
layer and output layer.

• Since this is a neural network, the units are called neurons

https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351

Fundamental Unit of a Neural Network

• The above is the fundamental unit of a neural network
• Wi refers to the weights, sometimes called synaptic weights
• The neuron is the mathematical function that connects inputs to outputs
• Xi refers to the inputs
• Y refers to the output

Neuronx2

x3

x1

y

Mathematical Definition Y = f(w1*x1 + w2*x2 + w3*x3 + b)

w1

w2

w3

Fundamental Unit of a Neural Network

• Many different functions are used for the neuron, but the three most
popular are
• Sigmoid: (x) = 1/(1+exp(-x))
• Rectified Linear Unit (ReLU): f(x) = max(0,x)
• tanh: tanh(x) = 2(2x) - 1

Neuronx2

x3

x1

y

Mathematical Definition Y = f(w1*x1 + w2*x2 + w3*x3 + b)

w1

w2

w3

Fundamental Unit of a Neural Network

• Many different functions are used for the neuron, but the three most
popular are
• Sigmoid: (x) = 1/(1+exp(-x))
• Rectified Linear Unit (ReLU): f(x) = max(0,x)
• tanh: tanh(x) = 2(2x) - 1

Sigmoid: (x) = 1/(1+exp(-x)) tanh(x) = 2(2x) - 1 ReLU: f(x) = max(0,x)

Operation of a neural network

• Image is made up of a set number of pixels
• Each pixel becomes an input
• Example here: each pixel is from 0 to 256 in greyscale
• Each input is connected to all the neurons of the hidden layer
• Adjusting the weights will then eventually allow recognition of the digits

https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351

Training of an Artificial Neural Network

• Backpropagation algorithm a form of supervised learning
• We initialize all the weights of the ANN, and then feed the data into it
• Each training example generates an output.
• We know the correct output for those training samples, so for each output, we can define an error
• Then, we can essentially go backwards, assigning some part of that error to the weights between output

neuron and previous neurons
• Adjusting the weights allows us to move towards the correct answer, as defined by us

https://github.com/rasbt/python-machine-learning-book/blob/master/faq/visual-backpropagation.md

Handwriting Recognition

• We can easily recognize these numbers
• But this uses a huge number of neurons (~billion or more) and an even

larger number of connections/synapses (100’s of billions)

Approach

• Need a large set of training data
• Also need a set on which to test your trained model

Perceptron

• For the perceptron:
• Output = 0 if w*x ≤threshold
• Output = 1 if w*x >threshold

Neuronx2

x3

x1

y

Mathematical Definition Y = f(w1*x1 + w2*x2 + w3*x3 + b)

w1

w2

w3

What can we answer with a perceptron?

• Do we want to go to Coachella?

• Factor 1: Good weather?
• Factor 2: Friends going?
• Factor 3: Do we have tickets?

How would we decide this?

• Each variable is either a 1 or 0
• The decision making happens in the weights
• Here we have to assign weights and a threshold value

How would we decide this?

Threshold = 10
w1 = 5
w2 = 5
w3 = 11

This is a silly distribution. Either you have
tickets and you’re going, or you don’t and
you aren’t.

How would we decide this?

Threshold = 12
w1 = 5
w2 = 5
w3 = 11

Now this basically says that we only go if we
have tickets AND one of the other
conditions are true, but not both of them.

This is a silly example, but a reasonable
starting point to think about how we build
up complex decision making.

Addition of other nodes increases complexity

• We can now make decisions based on more inputs, and have a
more nuanced way of getting to the outputs.

How does information change through layers?

• As we move through the layers of the DNN, we are somewhat
making decisions on more and more abstract items

Perceptrons

• We can assume
• Inputs as a vector x = {x1, x2, x3}
• Weights as vector w = {w1, w2,w3}
• Then sum is just the dot product, and the become

• 0 when when x●w+b≤0
• 1 when when x●w+b>0

Perceptrons

• 0 when when x●w+b≤0
• 1 when when x●w+b>0

• b can be thought of the bias
• Large positive b -> neuron that fires on most inputs
• Negative b-> neuron that rarely fires

Perceptrons for logical functions?

• How could we implement
• AND
• OR
• NAND

Neuronx2

x1

y

w1

w2

Perceptrons for logical functions?

• NAND function
• Since NAND is logically complete, we can actually implement any logical function

using a perceptron

3x2

x1

y

-2

-2

X1 X2 Y

0 0 1

0 1 1

1 0 1

1 1 0

Adder

• We can actually build an adder using perceptrons!

Notation for perceptrons

• Note that inputs in ANNs are also usually drawn as circles
• But no inputs, only an output

So are perceptrons just more complex NAND gates?

• No
• The key strength lies in the algorithms which allow us to tune the

weights
• It also needs to be something that’s done with just the input, and not

something that relies on a human

• What’s so important about this?
• When we create a circuit, we basically presolve some set of problems
• Then we lay out the circuit to solve those
• However, with our ‘learning’ approach, we don’t have to do that. We

just create some basic architecture, and let it automatically tune itself
to get the right answer

Sigmoid Neurons

• If we want to learn, then we should have a small change in
weight in some synapse to have a corresponding small change
in the output

Sigmoid Neurons

• Why is this important?
• Let’s say we feed an input which is a handwritten digit

• It’s a 3
• Our NN classifies it as a 4…

• It would be great if we could just change it slightly and have a small change in
our output

Sigmoid Neurons

• Why is this important?
• But if we have a perceptron, then any small weight change can invert

the neuron output
• This then propagates down the NN and can radically change everything in a

fashion that is complex to precalculate
• You fixed your incorrect classification of the 3, but messed up others

Sigmoid Neurons

• Why is this important?
• So with perceptrons, it is challenging to have an algorithm that will

allow you to easily learn complex data
• To circumvent this, the sigmoid neuron was introduced

Sigmoid Neurons

• Looks the same as before…
• However, inputs can now be anything between 0 and 1, not just 0 or 1.
• Equation is now more complex:

• (x●w+b)=(z)= 1

1+𝑒−𝑧

Similarities between Perceptrons and Sigmoids

• (x●w+b)=(z)= 1

1+𝑒−𝑧

• When z is large positive number, then (z) ~1
• When z is large negative number, then (z) ~0
• Key difference is that we have smoothed out any sudden changes…

Why is smoothness crucial?

• (x●w+b)=(z)= 1

1+𝑒−𝑧

• Now, when we have a small change in a specific weight wi
• We also have a small change in the output

• The sum is over all the weights, wj, and 𝜕𝑜𝑢𝑡

𝜕𝑤𝑗
, 𝜕𝑜𝑢𝑡

𝜕𝑏
 represent the partial

derivatives of the output with respect to the weight or bias.
• So in this range, we essentially have a linear equation approximating

our output

∆𝑜𝑢𝑡 ~ ෍

𝑗

𝜕𝑜𝑢𝑡

𝜕𝑤𝑗
∆𝑤𝑗 +

𝜕𝑜𝑢𝑡

𝜕𝑏
∆𝑏

Sigmoid Neurons

• In the end the actual neuron doesn’t matter that much
• Smoothness lets us use the approximation given in the last slide

• It’s a bonus if computing the derivatives are easy to do, because we
will be doing a lot of that when training.

Sigmoid Neurons

• Now, if we have our NN
• Perceptron neurons are easy to evaluate

• 0 or 1; yes, or no;
• Since sigmoids are continuous, we have to setup some criteria to

decide what that output neuron is saying
• Maybe if a value is >0.5, then that input is a 9.

Neural Network Architecture

Input Layer

Hidden Layer

Output Layer

Three Layer Neural Network

Four Layer Neural Network

• This is a multi-layer perceptron (MLP)

How do we design our Neural Network Topology?

• Inputs
• Depends on the number and type of inputs

• Outputs
• If we are trying to do handwritten digit recognition, then we could use

10 outputs (0, 1, … , 9)

How do we design our Neural Network Topology?

• Input: 64 x 64 pixel greyscale image
• We could have 4096 input neurons, each with values between 0 and 1,

which represent the greyscale intensity of the pixel
• Here each input represents a pixel

How do we design our Neural Network Topology?

• Output: 0-9
• With 10 output neurons, we could assign each one a digit, and then

depending on the outputs, only 1 of those neurons should output a
‘yes’
• Recall ‘yes’ is defined as output being greater than some value (e.g. output>0.5)

How do we design our Neural Network Topology?

• Hidden layers?
• This part is art, not science
• Driven by heuristics depending on problem

How do we design our Neural Network Topology?

• Note:
• These are feed-forward neural networks
• All inputs move forward, never backward, during operation

Aside: Recurrent Neural Networks

• Note:
• The output of a neuron actually is an input
• There is some kind of time dependence, where the behavior can evolve over

time
• This is necessary as the output of a neuron cant be fed back in if it were to

be evaluated intantaneously

Getting back to handwriting

• This number is 6 different images
• Building an algorithm to automatically recognize and segment is a bit

outside the scope of what we cover here and relatively do-able.
• So we will focus on a single digit
• Once we have that, segmenting can be done by taking a single image,

and segmenting it into many different portions, and then using the
handwritten digit classifier to assign scores to the segmentation and
use the most highly scored version

An ANN for Handwriting

• What are the inputs?
• 28 x 28 pixels images of

scanned handwritten digits
• Input layer has 784 neurons
• Input pixels are greyscale

with 0 representing white
and 1 representing black

• One hidden layer
• This only has 15 neurons,

need to try different numbers
of neurons to figure out how
many hidden layers

An ANN for Handwriting

• Output layer
• 10 neurons, each

representing a digit
• For a given digit, one neuron

should be 1, while the others
should be 0.

• In reality, we find the neuron
with the highest value, and
say that is the one which
activated

An ANN for Handwriting

• Output layer
• Why not use just 4 digits with

binary encoded digits instead
of 10 neurons?

• If we do it, we will see that
our neural network will be
better with 10

• Why?

An ANN for Handwriting

• Why do 10 neurons work better than 4?
• Need to consider how this network is working

• The ‘0’ output neuron is basically summing up all the inputs from the hidden layer
and trying to decide whether the digit is a 0.

• So then, what are the hidden layer neurons doing?
• As a heuristic, let’s assume that the first hidden neuron detects whether a

certain pattern is present in the image:

How does the hidden layer neuron find a specific image?

• Recall, every single input is connected to the hidden layer
• So if I want the first hidden layer neuron to find that pattern, how would I

bias it?

Let’s do a simple example

• I want to design a hidden layer neuron which tells me if the top
left box is filled
• So, we have four inputs
• We want the output y to be high if x1 is dark and x2-4 are light

x1 x2

x3 x4

Neuronx2

x3

x1

y

w1

w2

w3

x4

w4

Let’s do a simple example

• Recall: (x●w+b)=(z)= 1

1+𝑒−𝑧

• So, want to weight w1 heavily, while
dramatically lowering the weights of
x2-x4

• We want the output y to be high if
x1 is dark and x2-4 are light

x1 x2

x3 x4

Neuronx2

x3

x1

y

w1

w2

w3

x4

w4

Back to the task at hand

• So, want to weight the pixels which
make up this pattern heavily, while
reduce the weights of the other
pixels

Neuronx2

x3

x1

y

w1

w2

w3

x4

w4

Other hidden layer neurons could then be detecting other images

• Then neuron 2 and 3 and 4 could be detecting these other patterns
• Together these 4 images make up a zero

N1 N2 N3 N4

Other hidden layer neurons could then be detecting other images

• If we see that all 4 of these neurons are firing, then we can make the assumption
that we are seeing a zero.

• Obviously this is a toy example, don’t get carried away trying to poke holes into it

• Now, we can possibly see why it’s better to have 10 outputs over 4
• With the above example, the 0 output neuron could just put the most weight on

the outputs from the hidden neurons N1 through N4, and weaken the others
• But, if we had only 4 output neurons, our neural network would have to essentially

do 2 calculations
• First, we would need to figure out what the number was
• Then we would need to transform that into binary

N1 N2 N3 N4

So what if we want the bitwise representation

• Why would this topology work?
• Well, when we add in a new output layer, we now have a new layer of abstraction.

• First, the hidden layer identifies certain patterns/features
• Second, the old output layer transforms those patterns into the basis set of digits
• Finally, the new output layer would transform the basis set of digits into binary

Learning how Artificial Neural Networks Learn with your Biological Neural
network

• We will use the MNIST Data set
• http://yann.lecun.com/exdb/mnist/
• Two parts

• 60,000 Training images (28 x 28 pixels, greyscale)
• They were scanned samples from >200 people, ½ government employees, ½

high school students
• 10,000 Test images
• These test data were collected from different people

http://yann.lecun.com/exdb/mnist/

How to train your artificial neural network

• Use x as the annotation for the input data vector, a 784 long
string of digits between 0 and 1 representing the greyscale
values.

• The output is then a vector y=y(x) with 10 digits.
• As an example:

• If input image x represents a 1
• Output vector y(x) = (0,1,0,0,0,0,0,0,0,0)
• What we need to do is develop an algorithm that let’s us find the

weights and biases so output is as close to y(x) given above as
possible.

How to train your artificial neural network

• We need to figure out what we want to optimize
• Obviously, the number of images correctly recognized, duh….

• But what if we used that as the objective function?
• C(w,b)=Number of correctly classified images
• Could we easily optimize with this?
• Not really, this is not a smooth function of w (all the weights in the

NN) or b (all the biases in the NN)

How to train your artificial neural network

• So what if we defined another ‘cost function’?
• C(w,b)=Number of correctly classified images
• Could we easily optimize with this?
• Not really, this is not a smooth function of w (all the weights in the

NN) or b (all the biases in the NN)

Cost Function

• w represents all the weights in the network
• b represents all the biases in the network
• a is the output vector when input vector x is input
• y(x) is the desired output vector when x is the input vector
• || y-a|| is just the magnitude of the difference between what we want and

what we have.
• Essentially, we take the square of the error
• This is called the quadratic cost function, or mean squared error (MSE)

𝐶 𝑤, 𝑏 =
1

2𝑛
෍

𝑥

ԡ𝑦(𝑥) ԡ−𝑎
2

Cost Function

• C is going to be positive or zero
• If C is small, then the actual network outputs are close to the inputs
• If C is large, our NN is outputting garbage
• We need an algorithm to minimize C by tuning w, b
• The chosen algorithm is gradient descent

𝐶 𝑤, 𝑏 =
1

2𝑛
෍

𝑥

ԡ𝑦(𝑥) ԡ−𝑎
2

Gradient Descent

• Let’s assume we want to minimize function C(v), where v is the
vector of inputs.
• This could be a single variable, with v being a number, or a million

variables, with v being a vector with a length of 1,000,000.
• For ease of visualization, let’s just say it has 2 variables

Minimization

• This seems easy enough…
• I can just see it, what’s the big deal?
• Not so easy with 106 variables
• Calculus also not tractable with huge

dimensionalities
• However we can still use these principles

• Imagine that we want to start at some point here and then
roll down to the bottom of the valley

Minimization

• Let’s use some math
• Assume ball starts at some location (v1, v2)
• Then the ball rolls v1 and v2
• We know:

• As long as change is small
• We want to make C negative
• Let’s define v as the vector of changes v=(v1, v2,…)T
• The T transpose operator is just there to say it’s a column vector

∆𝐶~
𝜕𝐶

𝜕𝑣1
∆𝑣1 +

𝜕𝐶

𝜕𝑣2
∆𝑣2

Minimization

• Also define a gradient vector:

• Now this let’s us write:

∆𝐶~
𝜕𝐶

𝜕𝑣1
∆𝑣1 +

𝜕𝐶

𝜕𝑣2
∆𝑣2

∇𝐶 =
𝜕𝐶

𝜕𝑣1
,

𝜕𝐶

𝜕𝑣2

𝑇

∆𝐶~∇𝐶 ∙ ∆𝑣

Minimization

• Now, how do we choose v to make C negative?

• Where g is a small, positive number
• If we use the above approach, then:

• But remember, ԡ∇ ԡ𝐶 2>0, so multiplying by a negative number means
this will always be negative…

•  is called the “learning rate”
• So we will use ∆𝑣 = −𝛾∇𝐶 as the rule for how we change our inputs

∆𝑣 = −𝛾∇𝐶

∆𝐶~ − 𝛾∇𝐶 ∙ ∇𝐶 = −𝛾ԡ∇ ԡ𝐶 2

Minimization

• Using the above update rule, we can now keep moving along
some path, decreasing the value of C until we reach a minimum
• This requires that we repeatedly compute the gradient, and then use

that to define motion

• But, in order for it to work, the learning rate needs to be small
enough for the linear approximation to work

𝑣 → 𝑣′ = 𝑣 − 𝛾∇𝐶

Minimization for more than 2 variables

• v=(v1, v2,…, vn)Td
• We use the same approach, and we are guaranteed that we will

be moving down the hill, so to speak
• The update rule essentially defines gradient descent
• We only need the first derivative
• Some variations on gradient descent use second derivatives, however, that

blows up in complexity
• If you have 106 inputs, then you might need 1012 second derivatives…

∇𝐶 =
𝜕𝐶

𝜕𝑣1
,

𝜕𝐶

𝜕𝑣2
, …

𝜕𝐶

𝜕𝑣𝑛

𝑇

Using Gradient Descent in a neural network

• In our neural network, we have some number of weights (w) and
some number of biases (b)

𝑤𝑘 → 𝑤𝑘
′ = 𝑤𝑘 − 𝛾

𝜕𝐶

𝜕𝑤𝑘

𝑏𝑙 → 𝑏𝑙
′ = 𝑏𝑙 − 𝛾

𝜕𝐶

𝜕𝑏𝑙

Using Gradient Descent in a neural network

• How would we actually do this?
• Remember our cost function

• It’s a function of all the inputs over the training examples set
• This means to compute the gradient, we need to first compute gradients

for all inputs, and then average them
• We’ve got a ton of inputs…this could take a long time, slowing down learning.

• So what can we do?
• Train with fewer inputs

𝐶 𝑤, 𝑏 =
1

2𝑛
෍

𝑥

ԡ𝑦(𝑥) ԡ−𝑎
2

Stochastic Gradient Descent

• Stochastic gradient descent says that the
• Let’s estimate the gradient by only averaging over a small set of

randomly chosen inputs
• We choose some subset m of random training inputs

• Label them X1,…,Xm and call them the mini-batch
• We expect that as long as m is not too small, the average value of the

gradient of the mini batch will be roughly the same as the average
value of the whole input set

σ𝑗=1
𝑚 ∇𝐶𝑥𝑗

𝑚
~

σ𝑥 ∇𝐶𝑥

𝑛
= ∇𝐶

Stochastic Gradient Descent

• If we rearrange, we get

σ𝑗=1
𝑚 ∇𝐶𝑥𝑗

𝑚
~

σ𝑥 ∇𝐶𝑥

𝑛
= ∇𝐶

∇𝐶 ~
1

𝑚
෍

𝑗=1

𝑚

∇𝐶𝑥𝑗

Using Stochastic Gradient Descent in our Networks

• If we rearrange, we get

• So when we train, we can pick out from the mini batch

σ𝑗=1
𝑚 ∇𝐶𝑥𝑗

𝑚
~

σ𝑥 ∇𝐶𝑥

𝑛
= ∇𝐶

∇𝐶 ~
1

𝑚
෍

𝑗=1

𝑚

∇𝐶𝑥𝑗

𝑤𝑘 → 𝑤𝑘
′ = 𝑤𝑘 − 𝛾

𝜕𝐶

𝜕𝑤𝑘

𝑏𝑙 → 𝑏𝑙
′ = 𝑏𝑙 − 𝛾

𝜕𝐶

𝜕𝑏𝑙

	Slide 1: ECE 105: Introduction to Electrical Engineering
	Slide 2: Timeframe
	Slide 3: Why Deep Neural Networks?
	Slide 4: What’s so deep about Deep Neural Networks?
	Slide 5: Fundamental Unit of a Neural Network
	Slide 6: Fundamental Unit of a Neural Network
	Slide 7: Fundamental Unit of a Neural Network
	Slide 8: Operation of a neural network
	Slide 9: Training of an Artificial Neural Network
	Slide 10: Handwriting Recognition
	Slide 11: Approach
	Slide 12: Perceptron
	Slide 13: What can we answer with a perceptron?
	Slide 14: How would we decide this?
	Slide 15: How would we decide this?
	Slide 16: How would we decide this?
	Slide 17: Addition of other nodes increases complexity
	Slide 18: How does information change through layers?
	Slide 19: Perceptrons
	Slide 20: Perceptrons
	Slide 21: Perceptrons for logical functions?
	Slide 22: Perceptrons for logical functions?
	Slide 23: Adder
	Slide 24: Notation for perceptrons
	Slide 25: So are perceptrons just more complex NAND gates?
	Slide 26: Sigmoid Neurons
	Slide 27: Sigmoid Neurons
	Slide 28: Sigmoid Neurons
	Slide 29: Sigmoid Neurons
	Slide 30: Sigmoid Neurons
	Slide 31: Similarities between Perceptrons and Sigmoids
	Slide 32: Why is smoothness crucial?
	Slide 33: Sigmoid Neurons
	Slide 34: Sigmoid Neurons
	Slide 35: Neural Network Architecture
	Slide 36: Four Layer Neural Network
	Slide 37: How do we design our Neural Network Topology?
	Slide 38: How do we design our Neural Network Topology?
	Slide 39: How do we design our Neural Network Topology?
	Slide 40: How do we design our Neural Network Topology?
	Slide 41: How do we design our Neural Network Topology?
	Slide 42: Aside: Recurrent Neural Networks
	Slide 43: Getting back to handwriting
	Slide 44: An ANN for Handwriting
	Slide 45: An ANN for Handwriting
	Slide 46: An ANN for Handwriting
	Slide 47: An ANN for Handwriting
	Slide 48: How does the hidden layer neuron find a specific image?
	Slide 49: Let’s do a simple example
	Slide 50: Let’s do a simple example
	Slide 51: Back to the task at hand
	Slide 52: Other hidden layer neurons could then be detecting other images
	Slide 53: Other hidden layer neurons could then be detecting other images
	Slide 54: So what if we want the bitwise representation
	Slide 55: Learning how Artificial Neural Networks Learn with your Biological Neural network
	Slide 56: How to train your artificial neural network
	Slide 57: How to train your artificial neural network
	Slide 58: How to train your artificial neural network
	Slide 59: Cost Function
	Slide 60: Cost Function
	Slide 61: Gradient Descent
	Slide 62: Minimization
	Slide 63: Minimization
	Slide 64: Minimization
	Slide 65: Minimization
	Slide 66: Minimization
	Slide 67: Minimization for more than 2 variables
	Slide 68: Using Gradient Descent in a neural network
	Slide 69: Using Gradient Descent in a neural network
	Slide 70: Stochastic Gradient Descent
	Slide 71: Stochastic Gradient Descent
	Slide 72: Using Stochastic Gradient Descent in our Networks

