ECE 105: Introduction to
Electrical Engineering

Lecture 19-20
Neural Networks
Yasser Khan
Rehan Kapadia

US

University of
Southern California

Timeframe

1943: McCulloch-Pitts “neuron”
e Started the field

1962: Rosenblatt’s perceptron
* Learned its own weight values; convergence proof

1969: Minsky & Papert book on perceptrons
* Proved limitations of single-layer perceptron networks

1982: Hopfield and convergence in symmetric networks
* Introduced energy-function concept

1986: Backpropagation of errors
« Method for training multilayer networks

Present: Probabilistic interpretations, Bayesian and spiking
networks

USC

University of
Southem California

Why Deep Neural Networks? USC

University of

Southern California

Classification i ' Instance
+ Localization

Classification Object Detection

Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

AN o
Y

Single object Multiple objects

* Deep neural networks are excellent for certain classes of problems, such as image
recognition, speech recognition etc.

* Importantly, as the amount of data scales, the performance of deep learning continues to improve

Image from Medium: “Review of Deep Learning Algorithms for Object Detection”

What’s so deep about Deep Neural Networks?

Simple Neural Network Deep Learning Neural Network

3 .': .
' ,i_.&ﬁa

RPN Y
NQ

NN N
o

@ nput Layer () Hidden Layer

@ Output Layer

US

University of
Southern California

* The “deep” refers to the number of layers of ‘units’ between the input

layer and output layer.
e Since this is a neural network, the units are called neurons

https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351

Fundamental Unit of a Neural Network USC

University of

Southern California

x1

X2

v

Neuron

x3

Mathematical Definition Y = f(w1*x1 + w2*x2 + w3*x3 + b)

* The above is the fundamental unit of a neural network
* W, refers to the weights, sometimes called synaptic weights
* The neuron is the mathematical function that connects inputs to outputs
* X, refers to the inputs
* Y refers to the output

Fundamental Unit of a Neural Network USC

University of

Southern California

x1

X2

v

Neuron

x3

Mathematical Definition Y = f(w1*x1 + w2*x2 + w3*x3 + b)

 Many different functions are used for the neuron, but the three most
popular are

* Sigmoid: o(x) = 1/(1+exp(-x))
» Rectified Linear Unit (ReLU): f(x) = max(0,x)
* tanh: tanh(x) = 2o(2x) - 1

Activation functions

f(x)

RelLU f(x) = max(0, x)

Rectified Linear Unit (ReLU)
ReLU{z) = max(0, x)

* Range: [0, o)
+ Shape: O for negatives, linear for positives
s Pros: Simple and cheap; mitigates vanishing gradients on 2 = 0

+ Cons: "Dead RelU” when neurons get stuck at O (weights push inputs negative)

of a Neural Network

o(x)

Sigmoid o(x) =1/ (1 + e”~{-x})

0.8

0.6

0.2}

0.0f

Sigmoid

1

olz) = 14+e*

Range: (0, 1)
Shape: "5"-curve; compresses large 2| toward 0 or 1

Pros: Probabilistic interpretation for binary classification logits

Cons: Saturates for large |x| — small gradients ("vanishing gradients"); outputs not zero-centered

tanh(x)

US

University of
Southern California

tanh(x) = 20(2x) — 1
1.00}

0.75}
0.50
0.25¢
0.00
—-0.251
-0.50¢
—-0.751

—-1.00¢

Hyperbolic tangent (tanh)
S

tanh(z) = = = 24(2z) 1

ef L pg—¥

* Range (—1,1)
* Shape: S-curve but zero-centered (often trains better than sigmoid for some RNN/MLP setups)

+ Cons: Still saturates at large |2| — potential vanishing gradients

Operation of a neural network

O 0 0 0 0 00 0 OO O
O 0 0 0 O O O O OO DD

D 0O 0O 0O O OO0 O0OTO DD

D0 0O O OO0OTO OGO OGO D

o o0 0 0o 0 0O O O O OO OO

D 0O 0 0 0 000 0 0 4

O 0 0 0 0 O 0 0 0 34186

O 0 0 o 0 0 0 0 61 242208

D O 0 0 0 O D D 156242 23

O 0 0 0 0 O 0 0 121255 98

0 0 0 0 0 0 0 0 0 169253

D 0O 0 0 OO0 OO0 0 3 1

D 0O 0 OO0 OO0 00O O

O 0 000 OO0OO0G G OO

o0 0 0 0 0 0O O O O O O

O 0 0 0 0 O0O0O 0O OGO OO

O 00 00 O0O0O0TG OGO OO

o 0 0 0 00O O O O O O

28 x 28 00 0 0 0 0 0 O0 OO0 O
?B4pixels 6 0 06 o 0 0 0 0O O O 0
o 0 0 0 O 0 O O O O O

D 00O O O0O0O OGO OGO D

O 00 0 0 O0COO0TG OGO OO

o 0 0 0 o 0 O O O O O

D 0 00 O OO0 O0OCTOD O

O 0 00O OCO0OTO DGO OGO D

o 0 0 0 O O O O O O DO

D 0 0 0 0 OO0 O0OCOD O

o o a o

0

(=T =~ I ~ T~]

1]

L=TN = I = =]

o

5 o o0 o o

[=2 == =]
(=T =R = =]
[=2 == =]
o o o o
(=T = I = I = =]

0 0 0 0

B2 146 182 254 254 181 176 138 15
253 217 208 136 136 136 166 232 99
M 3 0
0o o0 0

3

0

120 3
244169 18 0
59 241235 T2 14232066 0 O

0 25218254231 36 0 0
0 0 13325322133 0 0
19 237 111 196 217 19 0

0

0
]

o
0
0
o

0 174138 0
96 224 0
215138 0
215 87 0
215 97 0
185157 0

50 244 61
174 251 142 59 83 167 244 111

]

0
0
0
0
0
0

0 0 0 18 32
0 0 0 1313
0 0 8 194225
0 0 128247 &1
14 131 249117 0

23 193 204 18
0 25 218169
0 0 85 253 99
0 0 3 162214
0
0

woo o o o

0 0 mMazasa
0 0 40 254
0 0 0 112244

0 6 133253253253169 61 3
00 0

]
0

0
0

]
o

0
0
0

000 00
0 0 0 0 D
0 0 0 0 0

* Image is made up of a set number of pixels

Each pixel becomes an input

Example here: each pixel is from 0 to 256 in greyscale
Each input is connected to all the neurons of the hidden layer

(=K — I - N — B — I~ A -]

£
(2]

o o o 0 0 o 0 0 o 0 o 0 o0 o0 o0 o 0o o

o o o 0 0 oo o o0 00000000 0 0000 ocooo0

o 0 90 0 0 9o 90 0 90 00 00090000 00000090000

(=T~ T~ R - N~ - T - - - D - A - - - D - - - - - D - - - - - - - I - -2 - |

o0 0 0 0 o o o o Q0 0 o000 o Q0 D0 Qo oo oo oo oD

o 8 o 0 0 o o 0 9 0 60 o o 0 o 00 00000000 a0

(=K - - D - - - - - - N - O - - - D - - - - - D - - - - - - B - B - I - -

USC

Universt

Southern Ca.hfornia

Adjusting the weights will then eventually allow recognition of the digits

https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351

Training of an Artificial Neural Network USC

University of
Southern California

ad () o(141)
—_— = S
) W) =a;9 (error term of the output layer)

(compute gradient) 63 =aq® -y
r—’—\
\output y <= target y

O

ag(z@)
az2)
(error term of the hidden layer)

Input x

\ /X

ORONO

(G a6

5@ = (W®) 6 »

e Backpropagation algorithm a form of supervised learning
* We initialize all the weights of the ANN, and then feed the data into it
* Each training example generates an output.
* We know the correct output for those training samples, so for each output, we can define an error

* Then, we can essentially go backwards, assigning some part of that error to the weights between output
neuron and previous neurons

* Adjusting the weights allows us to move towards the correct answer, as defined by us

https://github.com/rasbt/python-machine-learning-book/blob/master/fag/visual-backpropagation.md

Handwriting Recognition USC

University of
Southem California

S0H /92

 We can easily recognize these numbers

e But this uses a huge number of neurons (~billion or more) and an even
larger number of connections/synapses (100’s of billions)

of

Southern California

Universt

Approach

=

X[l 0lJ] e

D

NS

ININSMNS

N

™

.

—

== O NG

3

R lad T I

Z

O

O

= bl |O N0

"

™~

DY

NN

Q-

NAS N[N o

o
N
)
S

G~
—HSMNS
™~

IS

QA DAIR QNN

™

* Need a large set of training data

* Also need a set on which to test your trained model

Perceptron USC

University of

Southern California

x1

X2

v

Neuron

x3

Mathematical Definition Y = f(w1*x1 + w2*x2 + w3*x3 + b)

* For the perceptron:

e Output = 0 if Zw*x <threshold
e Output =1 if 2w*x >threshold

What can we answer with a perceptron? UU_SC;
niversity o
Southern California

* Do we want to go to Coachella? x1 \o\
* Factor 1: Good weather? /2 |
* Factor 2: Friends going?/ ” Neuron :
* Factor 3: Do we have tickets? /o/-
3

How would we decide this? USC

University of
Do we want to go to COW X1 \o\
: ? X2

SouthemCa.hforma
o Factor 1: Good weather

> Factor 2: Friends going?/

°Factor 3: Do we have tickets? . — o

* Each variable is eithera 1l or 0
* The decision making happens in the weights
* Here we have to assign weights and a threshold value

How would we decide this? USC

University of
SouthemCa.hforma
1
Do we want to go to Coachella? " \0\‘
° Factor 1: Good weather?/v X2 Neuron
° Factor 2: Friends going?

°Factor 3: Do we have tickets? | /W‘

Threshold = 10 This is a silly distribution. Either you have
wl=5 tickets and you’re going, or you don’t and

you aren’t.
w2 =5 >

w3 =11

How would we decide this?

USC

University of

Southern California

Do we want to go to COW X1 \0\
o Factor 1: Good weather? X2 Y.

> Factor 2: Friends going?/

o Factor 3: Do we have tickets?

Threshold = 12

wl=5
w2 =5 >
w3 =11

- x3

Neuron

-

Now this basically says that we only go if we
have tickets AND one of the other
conditions are true, but not both of them.

This is a silly example, but a reasonable
starting point to think about how we build
up complex decision making.

Addition of other nodes increases complexity

Simple Neural Network Deep Learning Neural Network

3 .': .
' ,i_.&ﬁa

RPN Y
NQ

NN N
o

@ nput Layer () Hidden Layer

@ Output Layer

* We can now make decisions based on more inputs, and have a

more nuanced way of getting to the outputs.

US

University of
Southern California

USC

How does information change through layers? UL

Southern California

A
2

'LJ*:"’ :

ill II I:: f:l: =i | II.
L, AN b i \
e '*wfﬂ“*t‘sf’\\\
S R ’a!l'ﬁ:i.n"'.i'i'ﬂm’f? . \

ROl A .

H oy
S N T

el
Tl e
W : n g o

* As we move through the layers of the DNN, we are somewhat
making decisions on more and more abstract items

Perceptrons USC

University of
Southern California
x2 4°—~ Neuron Y,

* We can assume
* Inputs as a vector x = {x1, x2, x3}
* Weights as vector w = {w1, w2,w3}

* Then sum is just the dot product, and the become
0 when when x-w+b<0

e 1 when when xw+b>0

USC

Perceptrons UL

Southern California

X2 Neuron -

X3

e 0 when when x*w+b<0

e 1 when when x-w+b>0

* b can be thought of the bias
* Large positive b -> neuron that fires on most inputs

* Negative b-> neuron that rarely fires

Perceptrons for logical functions? USC

University of

Southern California
x2 Neuron

x1

v

* How could we implement
* AND
* OR
* NAND

AND gate USC

University of

Southern California
= (1.00, 1.00), b =-1.50
Boundary: y = -(1.00/1.00) x - (-1.50/1.00)
AND gate: perceptron boundary
1.2
1ol L(0.1) (1, 1)
0.8
0.6
AND gate
04r Weights/bias: wy = 1, w, =1, b= —1.5
0.2+ T T2 w-x+b Output
ool (0, 0) (1, 0) LH 0 D+0-15—-1.5 L
0 1 0+1-1.5—-0.5 0
_02 i 1 1 1 1 1 1
—-0.25 0.00 0.25 050 0.75 1.00 1.25 1] 1+0—-1.5—-0.5 0
1 1 1+1-15-—10.5 1

Decision boundany: 2 + 22 = 1.5. Only {1._ 1:| crosses,

OR gate USC

University of

Southern California
= (1.00, 1.00), b =-0.50
Boundary: y = -(1.00/1.00) x - (-0.50/1.00)
OR gate: perceptron boundary
1.2}
1ol IR (1,1)
OR gate
Weights/bias: uy = 1, us =1, b= —0.5
.(1' 0) Iy Lo - - -EI Clutput
0 0 0+0—0.5——0.5 0
—0.25 0.00 025 050 0.75 1.00 1.25 0 1 0+1-0.5=05 1
1 b 140—05—05 1
1 1 1+1—-0.5—1.5 1

Boundary: &y + 22 = (L5, Any input with at least one 1 is positive.

NAND gate

= (-1.00, -1.00),
Boundary: y = -(-1.00/-1.00) x

b =1.50

- (1.50/-1.00)

NAND gate: perceptron boundary

1.2}

1.0

0.8

0.6

0.4

0.2

-0.2

"(0. 1)

(0,0)

(1, 1)

.(1. 0)

-0.25

0.00

0.25

0.50

0.75 1.00 1.25

NAND gate

Weights/bias: wy = —1, un =

This is the logical NOT of AND (i.e, 1 except at (1, 1)),

I

w-xr—+b

0+0+1.5—-15

0-1+1.5—-0.5

-14+0+1L5=10.5

-1-1+15—-0.5

USC

University of

Southern California

Output

So are perceptrons just more complex NAND gates? USC

University of
Southem California

* No
* The key strength lies in the algorithms which allow us to tune the
weights
* |t also needs to be something that’s done with just the input, and not
something that relies on a human

* What’s so important about this?
* When we create a circuit, we basically presolve some set of problems
* Then we lay out the circuit to solve those

* However, with our ‘learning’ approach, we don’t have to do that. We
just create some basic architecture, and let it automatically tune itself
to get the right answer

Sigmoid Neurons USC

University of
Southern California

small change in any weight (or bias)

causes a small change in the output

THESANTE

Dlltpllt—}—ﬁﬂllf:pllt

* If we want to learn, then we should have a small change in
weight in some synapse to have a corresponding small change
in the output

Sigmoid Neurons USC

University of
Southern California

small change in any weight (or bias)

causes a small change in the output
THESANTE

Dlltpllt—}—ﬁﬂllf:pllt

* Why is this important?
* Let’s say we feed an input which is a handwritten digit
* It'sa3
* Our NN classifies it as a 4...

* It would be great if we could just change it slightly and have a small change in
our output

Sigmoid Neurons USC

University of
Southem California

small change in any weight (or bias)

causes a small change in the output

THESANTE

Dlltpllt—}—ﬁﬂllf:pllt

* Why is this important?
* But if we have a perceptron, then any small weight change can invert
the neuron output

* This then propagates down the NN and can radically change everything in a
fashion that is complex to precalculate

* You fixed your incorrect classification of the 3, but messed up others

Sigmoid Neurons USC

University of
Southern California

small change in any weight (or bias)

causes a small change in the output

THESANTE

Dlltpllt—}—ﬁﬂllf:pllt

* Why is this important?
* So with perceptrons, it is challenging to have an algorithm that will
allow you to easily learn complex data
* To circumvent this, the sigmoid neuron was introduced

Sigmoid Neurons USC

University of
Southern California
X2 4°—~ Neuron Y,

* Looks the same as before...
 However, inputs can now be anything between 0 and 1, not just O or 1.
* Equation is now more complex:

¢ o(x-w+b)=c(z)= e

Similarities between Perceptrons and Sigmoids USC

University of
Southern California

1

1+e—2
« When z is large positive number, then o(z) ~1

* When z is large negative number, then o(z) ~0
* Key difference is that we have smoothed out any sudden changes...

10}
ORp
onH
04}
//z’

' e .
-10 -5 5 10

* o(x*w+b)=0(z)=

Why is smoothness crucial? USC

University of
Southem California

1

1+e—2
* Now, when we have a small change in a specific weight Aw,

 We also have a small change in the output

* 5(x*w+b)=0c(z)=

pout ~ z IoUt Aw; + dout
* The sum is over all the weights, w, and . represent the partial
j

derivatives of the output with respect to the weight or bias.

* So in this range, we essentially have a linear equation approximating
our output

Sigmoid Neurons USC

University of
Southem California

* In the end the actual neuron doesn’t matter that much
* Smoothness lets us use the approximation given in the last slide

* It’s a bonus if computing the derivatives are easy to do, because we
will be doing a lot of that when training.

Sigmoid Neurons USC
; . :. 3 :

University of
o L \

Southern California
LR T e AN L
i’-‘ﬂl?*fhi;i SV R E;m}. \

"'!.;;Ffﬂ P
oy L IS
2

L]

* Now, if we have our NN

* Perceptron neurons are easy to evaluate
* 0 or1l;yes, orno;
* Since sigmoids are continuous, we have to setup some criteria to
decide what that output neuron is saying
* Maybe if a value is >0.5, then that input is a 9.

Neural Network Architecture USC

University of
Southern California

Three Layer Neural Network

-~

Input Layer < > output

—

\ Output Layer

-

Hidden Layer

Four Layer Neural Network USC

University of
Southern California

input layer |

* This is a multi-layer perceptron (MLP)

How do we design our Neural Network Topology? USC

University of
Southern California

hidden layers

input layer |

* [nputs
* Depends on the number and type of inputs

* Outputs

* If we are trying to do handwritten digit recognition, then we could use
10 outputs (0, 1, ..., 9)

How do we design our Neural Network Topology? USC

University of
Southern California

hidden layers

input layer |

* Input: 64 x 64 pixel greyscale image

* We could have 4096 input neurons, each with values between 0 and 1,
which represent the greyscale intensity of the pixel

* Here each input represents a pixel

How do we design our Neural Network Topology? USC

University of
Southern California

hidden layers

input layer |

* Output: 0-9

* With 10 output neurons, we could assign each one a digit, and then
depending on the outputs, only 1 of those neurons should output a
‘ves’

* Recall ‘yes’ is defined as output being greater than some value (e.g. output>0.5)

How do we design our Neural Network Topology? USC

University of
Southern California

input layer |

* Hidden layers?
* This part is art, not science
* Driven by heuristics depending on problem

How do we design our Neural Network Topology? USC

University of
Southern California

input layer |

* Note:
e These are feed-forward neural networks
* All inputs move forward, never backward, during operation

Aside: Recurrent Neural Networks USC

University of

Southem California

* Note:
 The output of a neuron actually is an input
* RNN has memory
* There is some kind of time dependence, where the behavior can evolve over
time
* This is necessary as the output of a neuron cant be fed back in if it were to
be evaluated intantaneously

Getting back to handwriting USC

University of
Southem California

SO0H /92 » SO/ q &

* This number is 6 different images

* Building an algorithm to automatically recognize and segment is a bit
outside the scope of what we cover here and relatively do-able.

* So we will focus on a single digit

* Once we have that, segmenting can be done by taking a single image,
and segmenting it into many different portions, and then using the
handwritten digit classifier to assign scores to the segmentation and
use the most highly scored version

An ANN for Handwriting USC

University of
Southern California

 What are the inputs?

e 28 x 28 pixels images of
scanned handwritten digits
1 * Input layer has 784 neurons
2 * Input pixels are greyscale
’ with O representing white
pat taver | (G s and 1 representing black

hidden layer
[.

j * One hidden layer

= S ; * This only has 15 neurons,
N) need to try different numbers
of neurons to figure out how
many hidden layers

An ANN for Handwriting USC

St SLfifornia
e * Output layer
10 neurons, each
representing a digit
= * For a given digit, one neuron
= g should be 1, while the others
should be 0.
CORane = j * In reality, we find the neuron

O with the highest value, and

S . say that is the one which
— s activated

An ANN for Handwriting USC

University of
Southem California

* Why do 10 neurons work better than 4?

* Need to consider how this network is working

* The ‘0’ output neuron is basically summing up all the inputs from the hidden layer
and trying to decide whether the digit is a O.

* So then, what are the hidden layer neurons doing?
e As a heuristic, let’s assume that the first hidden neuron detects whether a
certain pattern is present in the image:

A

How does the hidden layer neuron find a specific image?

A

aclelen layer
3 NLeUrons)

LRI AK

* Recall, every single input is connected to the hidden layer
e So if | want the first hidden layer neuron to find that pattern, how would |

bias it?

USC

University of
Southem California

Let’s do a simple example USC

University of

Southern California
. »/

* | want to design a hidden layer neuron which tells me if the top
left box is filled
* So, we have four inputs
 We want the output y to be high if x1 is dark and x2-4 are light

X2

v

Neuron

x3 x4

Let’s do a simple example USC

University of

SouthemCa.hforma
-2
1
e Recall: o(xw+b)=c(z)=

1+e~2 10}
* So, want to weight w1 heavily, while
dramatically lowering the weights of o8

Xx2-x4 of}
 We want the output y to be high if //

x1 is dark and x2-4 are light b a—— : o

X2

v

Neuron

x3 x4

Back to the task at hand

A

reduce the weights of the other
pixels

USC

University of

Southern California

v

Neuron

"0
Q.
2

* So, want to weight the pixels which
make up this pattern heavily, while

OoR

on

0O4)
2F
7
-

Other hidden layer neurons could then be detecting other images USC

N1

N2

N3

N4

A

f

L

o

University of
Southem California

\°\/\ |

@

* Then neuron 2 and 3 and 4 could be detecting these other patterns

* Together these 4 images make up a zero

Other hidden layer neurons could then be detecting other images USC

University of
Southem California

N1 N2 N3 N4

F g . s =

If we see that all 4 of these neurons are firing, then we can make the assumption

that we are seeing a zero.
* Obviously this is a toy example, don’t get carried away trying to poke holes into it

Now, we can possibly see why it’s better to have 10 outputs over 4

With the above example, the 0 output neuron could just put the most weight on
the outputs from the hidden neurons N1 through N4, and weaken the others

But, if we had only 4 output neurons, our neural network would have to essentially

do 2 calculations

* First, we would need to figure out what the number was
* Then we would need to transform that into binary

USC

Learning how Artificial Neural Networks Learn with your Biological Nt cm.
network

e We will use the MNIST Data set

* http://yann.lecun.com/exdb/mnist/

* Two parts
* 60,000 Training images (28 x 28 pixels, greyscale)

* They were scanned samples from >200 people, 72 government employees, %
high school students

* 10,000 Test images
* These test data were collected from different people

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

How to train your artificial neural network USC

University of
Southem California

e Use x as the annotation for the input data vector, a 784 long
string of digits between 0 and 1 representing the greyscale
values.

* The output is then a vector y=y(x) with 10 digits.

* As an example:
* If input image x represents a 1
e Output vector y(x) = (0,1,0,0,0,0,0,0,0,0)

* What we need to do is develop an algorithm that let’s us find the
weights and biases so output is as close to y(x) given above as
possible.

How to train your artificial neural network USC

University of

Southem California

* We need to figure out what we want to optimize
* Obviously, the number of images correctly recognized, duh....

* But what if we used that as the objective function?
e C(w,b)=Number of correctly classified images
e Could we easily optimize with this?

* Not really, this is not a smooth function of w (all the weights in the
NN) or b (all the biases in the NN)

How to train your artificial neural network USC

University of
Southem California

* So what if we defined another ‘cost function’?
e C(w,b)=Number of correctly classified images

e Could we easily optimize with this?

* Not really, this is not a smooth function of w (all the weights in the
NN) or b (all the biases in the NN)

Cost Function USC

University of
Southem California

1 2
cw,b) = = lly()—al

* w represents all the weights i the network

* b represents all the biases in the network

* ais the output vector when input vector x is input

y(x) is the desired output vector when x is the input vector

|| y-a|| is just the magnitude of the difference between what we want and
what we have.

* Essentially, we take the square of the error
* This is called the quadratic cost function, or mean squared error (MSE)

Cost Function USC

University of

Southem California

1 2
Cw,b) = — > [ly()—al

* Cis going to be positive or zero

If Cis small, then the actual network outputs are close to the inputs
If Cis large, our NN is outputting garbage

* We need an algorithm to minimize C by tuning w, b

The chosen algorithm is gradient descent

Gradient Descent USC

University of
Southern California

e Let’s assume we want to minimize function C(v), where v is the
vector of inputs.

* This could be a single variable, with v being a number, or a million
variables, with v being a vector with a length of 1,000,000.

* For ease of visualization, let’s just say it has 2 variables

Vol 2
Y
\ \““0. Iy 4 Lo
R

Minimization USC

University of
Southern California

* This seems easy enough...
* | can just see it, what’s the big deal?
* Not so easy with 106 variables

e Calculus also not tractable with huge
dimensionalities

 However we can still use these principles

* Imagine that we want to start at some point here an
roll down to the bottom of the valley

Example gradient descent USC

University of

Southern California

L

1 =
G{iﬂ.,f-l:l - E L{g‘ _ﬂ‘}gr Wi = wr, + b.

i=1

| used a tiny dataset = [(), 1,2, 3,4 with targets a = |1, 2.2, 2.0, 3.6, 4.1]. We start from (g, by) =
(—0.5,0.5) and take batch GD steps with learning rate @ = (.1

Gradients (derived)
0C 1 aC
E=EL{F{—¢J-’EE.~ ———L'[LH—E]-

Update rule:

Example gradient descent USC

University of

Southern California

GD path in parameter space (w,b) with per—step Iabels

2 _
Cost vs Iteration (Batch GD)
2.0}
6 |
St 1.5}
xl 4 »
< 1.0
¥| 3F
= o]
5l 0.5
1 |
0.0}
0 [1 1 1 1 1 1 1 1 1
00 25 50 75 10.0 125 15.0 17.5 20.0
Iteration k —0.57
-1.0

-15 -1.0

	Slide 1: ECE 105: Introduction to Electrical Engineering
	Slide 2: Timeframe
	Slide 3: Why Deep Neural Networks?
	Slide 4: What’s so deep about Deep Neural Networks?
	Slide 5: Fundamental Unit of a Neural Network
	Slide 6: Fundamental Unit of a Neural Network
	Slide 7: Activation functions of a Neural Network
	Slide 8: Operation of a neural network
	Slide 9: Training of an Artificial Neural Network
	Slide 10: Handwriting Recognition
	Slide 11: Approach
	Slide 12: Perceptron
	Slide 13: What can we answer with a perceptron?
	Slide 14: How would we decide this?
	Slide 15: How would we decide this?
	Slide 16: How would we decide this?
	Slide 17: Addition of other nodes increases complexity
	Slide 18: How does information change through layers?
	Slide 19: Perceptrons
	Slide 20: Perceptrons
	Slide 21: Perceptrons for logical functions?
	Slide 22: AND gate
	Slide 23: OR gate
	Slide 24: NAND gate
	Slide 25: So are perceptrons just more complex NAND gates?
	Slide 26: Sigmoid Neurons
	Slide 27: Sigmoid Neurons
	Slide 28: Sigmoid Neurons
	Slide 29: Sigmoid Neurons
	Slide 30: Sigmoid Neurons
	Slide 31: Similarities between Perceptrons and Sigmoids
	Slide 32: Why is smoothness crucial?
	Slide 33: Sigmoid Neurons
	Slide 34: Sigmoid Neurons
	Slide 35: Neural Network Architecture
	Slide 36: Four Layer Neural Network
	Slide 37: How do we design our Neural Network Topology?
	Slide 38: How do we design our Neural Network Topology?
	Slide 39: How do we design our Neural Network Topology?
	Slide 40: How do we design our Neural Network Topology?
	Slide 41: How do we design our Neural Network Topology?
	Slide 42: Aside: Recurrent Neural Networks
	Slide 43: Getting back to handwriting
	Slide 44: An ANN for Handwriting
	Slide 45: An ANN for Handwriting
	Slide 46: An ANN for Handwriting
	Slide 47: How does the hidden layer neuron find a specific image?
	Slide 48: Let’s do a simple example
	Slide 49: Let’s do a simple example
	Slide 50: Back to the task at hand
	Slide 51: Other hidden layer neurons could then be detecting other images
	Slide 52: Other hidden layer neurons could then be detecting other images
	Slide 53: Learning how Artificial Neural Networks Learn with your Biological Neural network
	Slide 54: How to train your artificial neural network
	Slide 55: How to train your artificial neural network
	Slide 56: How to train your artificial neural network
	Slide 57: Cost Function
	Slide 58: Cost Function
	Slide 59: Gradient Descent
	Slide 60: Minimization
	Slide 61: Example gradient descent
	Slide 62: Example gradient descent

