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Timeframe

1943: McCulloch-Pitts “neuron”
e Started the field

1962: Rosenblatt’s perceptron
* Learned its own weight values; convergence proof

1969: Minsky & Papert book on perceptrons
* Proved limitations of single-layer perceptron networks

1982: Hopfield and convergence in symmetric networks
* Introduced energy-function concept

1986: Backpropagation of errors
« Method for training multilayer networks

Present: Probabilistic interpretations, Bayesian and spiking
networks
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Why Deep Neural Networks? USC
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Classification i ' Instance
+ Localization

Classification Object Detection

Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

AN o
Y

Single object Multiple objects

* Deep neural networks are excellent for certain classes of problems, such as image
recognition, speech recognition etc.

* Importantly, as the amount of data scales, the performance of deep learning continues to improve

Image from Medium: “Review of Deep Learning Algorithms for Object Detection”



What’s so deep about Deep Neural Networks?

Simple Neural Network Deep Learning Neural Network
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* The “deep” refers to the number of layers of ‘units’ between the input

layer and output layer.
e Since this is a neural network, the units are called neurons

https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351



Fundamental Unit of a Neural Network USC
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x1

X2

v

Neuron

x3

Mathematical Definition Y = f(w1*x1 + w2*x2 + w3*x3 + b)

* The above is the fundamental unit of a neural network
* W, refers to the weights, sometimes called synaptic weights
* The neuron is the mathematical function that connects inputs to outputs
* X, refers to the inputs
* Y refers to the output



Fundamental Unit of a Neural Network USC
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x1

X2

v

Neuron

x3

Mathematical Definition Y = f(w1*x1 + w2*x2 + w3*x3 + b)

 Many different functions are used for the neuron, but the three most
popular are

* Sigmoid: o(x) = 1/(1+exp(-x))
» Rectified Linear Unit (ReLU): f(x) = max(0,x)
* tanh: tanh(x) = 2o(2x) - 1



Activation functions

f(x)

RelLU f(x) = max(0, x)

Rectified Linear Unit (ReLU)
ReLU{z) = max(0, x)

* Range: [0, o)
+ Shape: O for negatives, linear for positives
s Pros: Simple and cheap; mitigates vanishing gradients on 2 = 0

+ Cons: "Dead RelU” when neurons get stuck at O (weights push inputs negative)

of a Neural Network

o(x)

Sigmoid o(x) =1/ (1 + e”~{-x})

0.8

0.6

0.2}

0.0f

Sigmoid

1

olz) = 14+e*

Range: (0, 1)
Shape: "5"-curve; compresses large 2| toward 0 or 1

Pros: Probabilistic interpretation for binary classification logits

Cons: Saturates for large |x| — small gradients ("vanishing gradients"); outputs not zero-centered

tanh(x)
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tanh(x) = 20(2x) — 1
1.00}

0.75}
0.50
0.25¢
0.00
—-0.251
-0.50¢
—-0.751

—-1.00¢

Hyperbolic tangent (tanh)
S

tanh(z) = = = 24(2z) 1

ef L pg—¥

* Range (—1,1)
* Shape: S-curve but zero-centered (often trains better than sigmoid for some RNN/MLP setups)

+  Cons: Still saturates at large |2| — potential vanishing gradients



Operation of a neural network
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* Image is made up of a set number of pixels

Each pixel becomes an input

Example here: each pixel is from 0 to 256 in greyscale
Each input is connected to all the neurons of the hidden layer
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Adjusting the weights will then eventually allow recognition of the digits

https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351



Training of an Artificial Neural Network USC
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e Backpropagation algorithm a form of supervised learning
* We initialize all the weights of the ANN, and then feed the data into it
* Each training example generates an output.
* We know the correct output for those training samples, so for each output, we can define an error

* Then, we can essentially go backwards, assigning some part of that error to the weights between output
neuron and previous neurons

* Adjusting the weights allows us to move towards the correct answer, as defined by us

https://github.com/rasbt/python-machine-learning-book/blob/master/fag/visual-backpropagation.md



Handwriting Recognition USC
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 We can easily recognize these numbers

e But this uses a huge number of neurons (~billion or more) and an even
larger number of connections/synapses (100’s of billions)
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* Need a large set of training data

* Also need a set on which to test your trained model



Perceptron USC
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x1

X2

v

Neuron

x3

Mathematical Definition Y = f(w1*x1 + w2*x2 + w3*x3 + b)

* For the perceptron:

e Output = 0 if Zw*x <threshold
e Output =1 if 2w*x >threshold



What can we answer with a perceptron? UU_SC;
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* Do we want to go to Coachella? x1 \o\
* Factor 1: Good weather? /2 |
* Factor 2: Friends going?/ ” Neuron :
* Factor 3: Do we have tickets? /o/-
3




How would we decide this? USC
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o Factor 1: Good weather

> Factor 2: Friends going?/

°Factor 3: Do we have tickets? . — o

* Each variable is eithera 1l or 0
* The decision making happens in the weights
* Here we have to assign weights and a threshold value



How would we decide this? USC
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1
Do we want to go to Coachella? " \0\‘
° Factor 1: Good weather?/v X2 Neuron
° Factor 2: Friends going?

°Factor 3: Do we have tickets? | /W‘

Threshold = 10 This is a silly distribution. Either you have
wl=5 tickets and you’re going, or you don’t and

you aren’t.
w2 =5 >

w3 =11




How would we decide this?
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Do we want to go to COW X1 \0\
o Factor 1: Good weather? X2 Y.

> Factor 2: Friends going?/

o Factor 3: Do we have tickets?

Threshold = 12

wl=5
w2 =5 >
w3 =11

- x3

Neuron

-

Now this basically says that we only go if we
have tickets AND one of the other
conditions are true, but not both of them.

This is a silly example, but a reasonable
starting point to think about how we build
up complex decision making.



Addition of other nodes increases complexity

Simple Neural Network Deep Learning Neural Network
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* We can now make decisions based on more inputs, and have a

more nuanced way of getting to the outputs.
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* As we move through the layers of the DNN, we are somewhat
making decisions on more and more abstract items



Perceptrons USC
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x2 4°—~ Neuron Y,

* We can assume
* Inputs as a vector x = {x1, x2, x3}
* Weights as vector w = {w1, w2,w3}

* Then sum is just the dot product, and the become
0 when when x-w+b<0

e 1 when when xw+b>0
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X2 Neuron -

X3

e 0 when when x*w+b<0

e 1 when when x-w+b>0

* b can be thought of the bias
* Large positive b -> neuron that fires on most inputs

* Negative b-> neuron that rarely fires



Perceptrons for logical functions? USC
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x2 Neuron

x1

v

* How could we implement
* AND
* OR
* NAND



AND gate USC
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= (1.00, 1.00), b =-1.50
Boundary: y = -(1.00/1.00) x - (-1.50/1.00)
AND gate: perceptron boundary
1.2
1ol L(0.1) (1, 1)
0.8
0.6
AND gate
04r Weights/bias: wy = 1, w, =1, b= —1.5
0.2+ T T2 w-x+b Output
ool (0, 0) (1, 0) LH 0 D+0-15—-1.5 L
0 1 0+1-1.5—-0.5 0
_02 i 1 1 1 1 1 1
—-0.25 0.00 0.25 050 0.75 1.00 1.25 1 ] 1+0—-1.5—-0.5 0
1 1 1+1-15-—10.5 1

Decision boundany: 2 + 22 = 1.5. Only {1._ 1:| crosses,



OR gate USC
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= (1.00, 1.00), b =-0.50
Boundary: y = -(1.00/1.00) x - (-0.50/1.00)
OR gate: perceptron boundary
1.2}
1ol IR (1,1)
OR gate
Weights/bias: uy = 1, us =1, b= —0.5
.(1' 0) Iy Lo - - -EI Clutput
0 0 0+0—0.5——0.5 0
—0.25 0.00 025 050 0.75 1.00 1.25 0 1 0+1-0.5=05 1
1 b 140—05—05 1
1 1 1+1—-0.5—1.5 1

Boundary: &y + 22 = (L5, Any input with at least one 1 is positive.



NAND gate

= (-1.00, -1.00),
Boundary: y = -(-1.00/-1.00) x

b =1.50

- (1.50/-1.00)

NAND gate: perceptron boundary

1.2}
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NAND gate

Weights/bias: wy = —1, un =

This is the logical NOT of AND (i.e, 1 except at (1, 1)),

I

w-xr—+b

0+0+1.5—-15

0-1+1.5—-0.5

-14+0+1L5=10.5

-1-1+15—-0.5
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So are perceptrons just more complex NAND gates? USC
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* No
* The key strength lies in the algorithms which allow us to tune the
weights
* |t also needs to be something that’s done with just the input, and not
something that relies on a human

* What’s so important about this?
* When we create a circuit, we basically presolve some set of problems
* Then we lay out the circuit to solve those

* However, with our ‘learning’ approach, we don’t have to do that. We
just create some basic architecture, and let it automatically tune itself
to get the right answer



Sigmoid Neurons USC
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small change in any weight (or bias)

causes a small change in the output

THESANTE

Dlltpllt—}—ﬁﬂllf:pllt

* If we want to learn, then we should have a small change in
weight in some synapse to have a corresponding small change
in the output



Sigmoid Neurons USC
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small change in any weight (or bias)

causes a small change in the output
THESANTE
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* Why is this important?
* Let’s say we feed an input which is a handwritten digit
* It'sa3
* Our NN classifies it as a 4...

* It would be great if we could just change it slightly and have a small change in
our output



Sigmoid Neurons USC
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small change in any weight (or bias)

causes a small change in the output

THESANTE
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* Why is this important?
* But if we have a perceptron, then any small weight change can invert
the neuron output

* This then propagates down the NN and can radically change everything in a
fashion that is complex to precalculate

* You fixed your incorrect classification of the 3, but messed up others



Sigmoid Neurons USC
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small change in any weight (or bias)

causes a small change in the output

THESANTE
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* Why is this important?
* So with perceptrons, it is challenging to have an algorithm that will
allow you to easily learn complex data
* To circumvent this, the sigmoid neuron was introduced



Sigmoid Neurons USC
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X2 4°—~ Neuron Y,

* Looks the same as before...
 However, inputs can now be anything between 0 and 1, not just O or 1.
* Equation is now more complex:

¢ o(x-w+b)=c(z)= e



Similarities between Perceptrons and Sigmoids USC
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1

1+e—2
« When z is large positive number, then o(z) ~1

* When z is large negative number, then o(z) ~0
* Key difference is that we have smoothed out any sudden changes...

10}
ORp
onH
04}
//z’

' e .
-10 -5 5 10

* o(x*w+b)=0(z)=




Why is smoothness crucial? USC
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1

1+e—2
* Now, when we have a small change in a specific weight Aw,

 We also have a small change in the output

* 5(x*w+b)=0c(z)=

pout ~ z  IoUt Aw; + dout
* The sum is over all the weights, w, and . represent the partial
j

derivatives of the output with respect to the weight or bias.

* So in this range, we essentially have a linear equation approximating
our output



Sigmoid Neurons USC
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* In the end the actual neuron doesn’t matter that much
* Smoothness lets us use the approximation given in the last slide

* It’s a bonus if computing the derivatives are easy to do, because we
will be doing a lot of that when training.



Sigmoid Neurons USC
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* Now, if we have our NN

* Perceptron neurons are easy to evaluate
* 0 or1l;yes, orno;
* Since sigmoids are continuous, we have to setup some criteria to
decide what that output neuron is saying
* Maybe if a value is >0.5, then that input is a 9.



Neural Network Architecture USC
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Three Layer Neural Network

-~

Input Layer < > output

—

\ Output Layer

-

Hidden Layer




Four Layer Neural Network USC
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input layer |

* This is a multi-layer perceptron (MLP)



How do we design our Neural Network Topology? USC
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hidden layers

input layer |

* [nputs
* Depends on the number and type of inputs

* Outputs

* If we are trying to do handwritten digit recognition, then we could use
10 outputs (0, 1, ..., 9)



How do we design our Neural Network Topology? USC
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hidden layers

input layer |

* Input: 64 x 64 pixel greyscale image

* We could have 4096 input neurons, each with values between 0 and 1,
which represent the greyscale intensity of the pixel

* Here each input represents a pixel



How do we design our Neural Network Topology? USC
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hidden layers

input layer |

* Output: 0-9

* With 10 output neurons, we could assign each one a digit, and then
depending on the outputs, only 1 of those neurons should output a
‘ves’

* Recall ‘yes’ is defined as output being greater than some value (e.g. output>0.5)



How do we design our Neural Network Topology? USC
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input layer |

* Hidden layers?
* This part is art, not science
* Driven by heuristics depending on problem



How do we design our Neural Network Topology? USC
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input layer |

* Note:
e These are feed-forward neural networks
* All inputs move forward, never backward, during operation



Aside: Recurrent Neural Networks USC
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* Note:
 The output of a neuron actually is an input
* RNN has memory
* There is some kind of time dependence, where the behavior can evolve over
time
* This is necessary as the output of a neuron cant be fed back in if it were to
be evaluated intantaneously



Getting back to handwriting USC
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SO0H /92 » SO/ q &

* This number is 6 different images

* Building an algorithm to automatically recognize and segment is a bit
outside the scope of what we cover here and relatively do-able.

* So we will focus on a single digit

* Once we have that, segmenting can be done by taking a single image,
and segmenting it into many different portions, and then using the
handwritten digit classifier to assign scores to the segmentation and
use the most highly scored version



An ANN for Handwriting USC
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 What are the inputs?

e 28 x 28 pixels images of
scanned handwritten digits
1 * Input layer has 784 neurons
2 * Input pixels are greyscale
’ with O representing white
pat taver | (G s and 1 representing black

hidden layer
[ .

j * One hidden layer

= S ; * This only has 15 neurons,
N ) need to try different numbers
of neurons to figure out how
many hidden layers




An ANN for Handwriting USC
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e * Output layer
10 neurons, each
representing a digit
= * For a given digit, one neuron
= g should be 1, while the others
should be 0.
CORane = j * In reality, we find the neuron

O with the highest value, and

S . say that is the one which
— s activated




An ANN for Handwriting USC
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* Why do 10 neurons work better than 4?

* Need to consider how this network is working

* The ‘0’ output neuron is basically summing up all the inputs from the hidden layer
and trying to decide whether the digit is a O.

* So then, what are the hidden layer neurons doing?
e As a heuristic, let’s assume that the first hidden neuron detects whether a
certain pattern is present in the image:

A




How does the hidden layer neuron find a specific image?

A

aclelen layer
3 NLeUrons)

LRI AK

* Recall, every single input is connected to the hidden layer
e So if | want the first hidden layer neuron to find that pattern, how would |

bias it?

USC

University of
Southem California



Let’s do a simple example USC
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. »/

* | want to design a hidden layer neuron which tells me if the top
left box is filled
* So, we have four inputs
 We want the output y to be high if x1 is dark and x2-4 are light

X2

v

Neuron

x3 x4




Let’s do a simple example USC
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-2
1
e Recall: o(xw+b)=c(z)=

1+e~2 10}
* So, want to weight w1 heavily, while
dramatically lowering the weights of o8

Xx2-x4 of}
 We want the output y to be high if //

x1 is dark and x2-4 are light b a—— : o

X2

v

Neuron

x3 x4




Back to the task at hand

A

reduce the weights of the other
pixels

USC
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v

Neuron

"0
Q.
2

* So, want to weight the pixels which
make up this pattern heavily, while

OoR
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0O4)
2F
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Other hidden layer neurons could then be detecting other images USC

N1

N2

N3

N4

A

f

L

o

University of
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\°\/\ |

@

* Then neuron 2 and 3 and 4 could be detecting these other patterns

* Together these 4 images make up a zero




Other hidden layer neurons could then be detecting other images USC
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N1 N2 N3 N4

F g . s =

If we see that all 4 of these neurons are firing, then we can make the assumption

that we are seeing a zero.
* Obviously this is a toy example, don’t get carried away trying to poke holes into it

Now, we can possibly see why it’s better to have 10 outputs over 4

With the above example, the 0 output neuron could just put the most weight on
the outputs from the hidden neurons N1 through N4, and weaken the others

But, if we had only 4 output neurons, our neural network would have to essentially

do 2 calculations

* First, we would need to figure out what the number was
* Then we would need to transform that into binary




USC

Learning how Artificial Neural Networks Learn with your Biological Nt cm.
network

e We will use the MNIST Data set

* http://yann.lecun.com/exdb/mnist/

* Two parts
* 60,000 Training images (28 x 28 pixels, greyscale)

* They were scanned samples from >200 people, 72 government employees, %
high school students

* 10,000 Test images
* These test data were collected from different people



http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

How to train your artificial neural network USC

University of
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e Use x as the annotation for the input data vector, a 784 long
string of digits between 0 and 1 representing the greyscale
values.

* The output is then a vector y=y(x) with 10 digits.

* As an example:
* If input image x represents a 1
e Output vector y(x) = (0,1,0,0,0,0,0,0,0,0)

* What we need to do is develop an algorithm that let’s us find the
weights and biases so output is as close to y(x) given above as
possible.



How to train your artificial neural network USC
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* We need to figure out what we want to optimize
* Obviously, the number of images correctly recognized, duh....

* But what if we used that as the objective function?
e C(w,b)=Number of correctly classified images
e Could we easily optimize with this?

* Not really, this is not a smooth function of w (all the weights in the
NN) or b (all the biases in the NN)



How to train your artificial neural network USC
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* So what if we defined another ‘cost function’?
e C(w,b)=Number of correctly classified images

e Could we easily optimize with this?

* Not really, this is not a smooth function of w (all the weights in the
NN) or b (all the biases in the NN)



Cost Function USC
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1 2
cw,b) = = lly()—al

* w represents all the weights i the network

* b represents all the biases in the network

* ais the output vector when input vector x is input

y(x) is the desired output vector when x is the input vector

|| y-a|| is just the magnitude of the difference between what we want and
what we have.

* Essentially, we take the square of the error
* This is called the quadratic cost function, or mean squared error (MSE)
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1 2
Cw,b) = — > [ly()—al

* Cis going to be positive or zero

If Cis small, then the actual network outputs are close to the inputs
If Cis large, our NN is outputting garbage

* We need an algorithm to minimize C by tuning w, b

The chosen algorithm is gradient descent
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e Let’s assume we want to minimize function C(v), where v is the
vector of inputs.

* This could be a single variable, with v being a number, or a million
variables, with v being a vector with a length of 1,000,000.

* For ease of visualization, let’s just say it has 2 variables

Vol 2
Y
\ \““0. Iy 4 Lo
R
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* This seems easy enough...
* | can just see it, what’s the big deal?
* Not so easy with 106 variables

e Calculus also not tractable with huge
dimensionalities

 However we can still use these principles

* Imagine that we want to start at some point here an
roll down to the bottom of the valley
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L

1 =
G{iﬂ.,f-l:l - E L{g‘ _ﬂ‘}gr Wi = wr, + b.

i=1

| used a tiny dataset = [(), 1,2, 3,4 with targets a = |1, 2.2, 2.0, 3.6, 4.1]. We start from (g, by ) =
(—0.5,0.5) and take batch GD steps with learning rate @ = (.1

Gradients (derived)
0C 1 aC
E=EL{F{—¢J-’EE.~ ———L'[LH—E]-

Update rule:
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GD path in parameter space (w,b) with per—step Iabels

2 _
Cost vs Iteration (Batch GD)
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