

ECE 105: Introduction to Electrical Engineering

Lecture 18
Hardware implementation of NN
Yasser Khan
Rehan Kapadia

Why use NN when your can hardcode?

Self-driving car

On-device machine learning applications in the single mW and below

Vibration and motion

Any 'signal'

Predictive maintenance, sensor fusion, accelerometer, pressure, lidar/radar, speed, shock, vibration, pollution, density, viscosity, etc.

Voice and sound

Recognition and creation

Keyword spotting, speech recognition, natural language processing, speech synthesis, sound recognition, etc.

Vision

Images and video

Object detection, face unlock, object classification etc.

Sub-mW computing vs 100s of mW computing

Single Board Computer

- More powerful (faster processor, more memory)
- Runs full, general purpose operating system (OS)
- Can provide full command line or graphical user interface
- Requires more power

Microcontroller

- Less powerful
- Bare-metal (superloop) or real-time operating system (RTOS)
- Limited or no user interface
- Requires less power

Cortex-M series microcontrollers are becoming powerful

Vibration

detection

nRF52840 is built around the 32-bit ARM® Cortex™-M4 CPU with floating point unit running at 64 MHz.

ML in microcontrollers TinyML

Motion classification from accelerometer data

Motion classification from accelerometer data

Way too many inputs to the model

Problems with deep learning

- 1. Computational complexity
- 2. Requires lots of training data

Feature extraction

What is a feature

 Individual measurable property or characteristic of a phenomenon being observed

Raw data

1 (x, y, z) accelerometer point from "left-right" sample

Many (x, y, z) accelerometer points from all classes

RMS of acceleration in each axis as the feature

Features don't need to be only in the time domain

Features in the frequency domain

Using both time and frequency domain features

Holdout Method for training, validation, and testing

Dataset balance

99% accuracy!

"Naive classifier"

Data flow diagram

Inference: using the machine learning model to make predictions on unseen data in the wild

													F	ea	atui	res															
accX RMS accX Peak 1 Freq	accX Peak 1 Height	accX Peak 2 Freq	accX Peak 2 Height	accX Peak 3 Freq	accX Peak 3 Height	accX Spec Pow 0.1-0.5	accX Spec Pow 0.5-1.0	accX Spec Pow 1.0-2.0	accX Spec Pow 2.0-5.0	accY RMS	accY Peak 1 Freq	accY Peak 1 Height	accY Peak 2 Freq	accY Peak 2 Height	accY Peak 3 Freq	accY Peak 3 Height	accY Spec Pow 0.1-0.5	accY Spec Pow 0.5-1.0	accY Spec Pow 1.0-2.0	accY Spec Pow 2.0-5.0	accZ RMS	accZ Peak 1 Freq	accZ Peak 1 Height	accZ Peak 2 Freq	accZ Peak 2 Height	accZ Peak 3 Freq	accZ Peak 3 Height	accZ Spec Pow 0.1-0.5	accZ Spec Pow 0.5-1.0	accZ Spec Pow 1.0-2.0	accZ Spec Pow 2.0-5.0

Validation Set

Validation Sample	Actual Label
1	Idle
2	Circle
3	Circle
4	Up-Down
5	Left-Right
6	Up-Down
:	:

Predicted Label

		Circle	Idle	Left-Right	Up-Down
<u></u>	Circle				
Label	Idle				
Actual L	Left-Right				
∢	Up-Down				

Validation Set

Validation Sample	Actual Label
1	Idle
2	Circle
3	Circle
4	Up-Down
5	Left-Right
6	Up-Down

Predicted Label

		Circle	Idle	Left-Right	Up-Down
Actual Label	Circle	0	0	0	0
	Idle	0	0	0	0
	Left-Right	0	0	0	0
∢	Up-Down	0	0	0	0

Validation Set

Validation Sample	Actual Label
1	Idle
2	Circle
3	Circle
4	Up-Down
5	Left-Right
6	Up-Down
	•

Predicted Label

		Circle	Idle	Left-Right	Up-Down
Label	Circle	0	0	0	0
	Idle	0	1	0	0
ACIUAI	Left-Right	0	0	0	0
֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֡֓֓֓֡֓֡֓	Up-Down	0	0	0	0

Validation Sample	Actual Label
1	Idle
2	Circle
3	Circle
4	Up-Down
5	Left-Right
6	Up-Down

Predicted Label

_
-
~
w
_
_
\subseteq
=
0
•
ຜ
υ,
\neg
_
_
_
=
\mathbf{c}
•
()
$\mathbf{\mathcal{L}}$

		Circle	Idle	Left-Right	Up-Down
Label	Circle	0	0	1	0
	Idle	0	1	0	0
Actual	Left-Right	0	0	0	0
∢	Up-Down	0	0	0	0

Validation Set

Validation Sample	Actual Label
1	Idle
2	Circle
3	Circle
4	Up-Down
5	Left-Right
6	Up-Down

Predicted Label

		Circle	Idle	Left-Right	Up-Down	
Actual Label	Circle	205	10	1	46	
	Idle	6	199	0	32	
	Left-Right	9	17	223	34	
A	Up-Down	21	8	3	186	

Confusion matrix accuracy

Total accuracy:
$$\frac{\sum correct}{\sum all} = \frac{813}{1000} = 0.813$$

Predicted Label

\sim
-;-
_
+
~
•••
_
_
_
0
0
_
S
~
_
Œ
=
\Box
_
O
4
()

Actual Label		Circle	Idle	Left-Right	Up-Down
	Circle	205	10	1	46
	Idle	6	199	0	32
	Left-Right	9	17	223	34
	Up-Down	21	8	3	186

Is this a good dataset?

Predicted Label

		Circle	Idle	Left-Right	Up-Down
	Circle	0	6	0	0
5	Idle	0	973	0	0
	Left-Right	0	11	0	0
	Up-Down	0	10	0	0

Positives and negatives

Confusion Matrix

Predicted Label

abel		Positive	Negative
Actual Labe	Positive	38	17
Actu	Negative	3	42

True Positive (TP): Predicted positive matches actual positive

True Negative (TN): Predicted negative matches actual negative

False Positive (FP) ("Type I Error"): Predicted positive does not match actual negative

False Negative (FN) ("Type II Error"): Predicted negative does not match actual positive

False positives, false negatives

Predicted Label

Confusion Matrix

		Circle	Idle	Left-Right	Up-Down
Actual Label	Circle	205	10	1	46
	Idle	6	199	0	32
	Left-Right	9	17	223	34
	Up-Down	21	8	3	186

True Positive (TP): Predicted positive matches actual positive

True Negative (TN): Predicted negative matches actual negative

False Positive (FP) ("Type I Error"): Predicted positive does not match actual negative

False Negative (FN) ("Type II Error"): Predicted negative does not match actual positive

Accuracy for a single class

Predicted Label

Confusion Matrix

Actual Label		Circle	Idle	Left-Right	Up-Down
	Circle	205	10	1	46
	Idle	6	199	0	32
	Left-Right	9	17	223	34
	Up-Down	21	8	3	186

Accuracy

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN} = \frac{TP + TN}{Total}$$

$$= \frac{199 + 728}{1000} = 0.927$$

True Positive Rate, Sensitivity

Predicted Label

Confusion Matrix

		Circle	Idle	Left-Right	Up-Down
Actual Label	Circle	205	10	1	46
	Idle	6	199	0	32
	Left-Right	9	17	223	34
	Up-Down	21	8	3	186

True Positive Rate (TPR), Sensitivity, Recall, Hit Rate

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = \frac{\Box}{\Box + \Box}$$

$$= \frac{199}{199 + 38} = 0.840$$

True Negative Rate, Selectivity

Predicted Label

Confusion Matrix

Actual Label		Circle	Idle	Left-Right	Up-Down
	Circle	205	10	1	46
	Idle	6	199	0	32
	Left-Right	9	17	223	34
	Up-Down	21	8	3	186

True Negative Rate (TNR), Specificity, Selectivity

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = \frac{1}{1 + 1}$$

$$= \frac{728}{728 + 35} = 0.954$$

Precision (Positive Predictive Value)

Predicted Label

Confusion Matrix

		Circle	Idle	Left-Right	Up-Down
Actual Label	Circle	205	10	1	46
	Idle	6	199	0	32
	Left-Right	9	17	223	34
	Up-Down	21	8	3	186

Positive Predictive Value (PPV), Precision

$$PPV = \frac{TP}{TP + FP} = \frac{\Box}{\Box + \Box}$$

$$= \frac{199}{199 + 35} = 0.850$$

F1 score

Predicted Label

•
×
_
_
w
>
_
_
=
0
10
U,
\neg
4
_
_
0
()
$\mathbf{\mathcal{I}}$

		Circle	Idle	Left-Right	Up-Down
Actual Label	Circle	205	10	1	46
	Idle	6	199	0	32
	Left-Right	9	17	223	34
	Up-Down	21	8	3	186

F1 Score

$$F_1 = 2 \cdot \frac{PPV \cdot TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$$
$$= 2 \cdot \frac{0.850 \cdot 0.840}{0.850 \pm 0.840} = 0.845$$

Classifier metrics

Drad	icted	Laha
FIEU	IICLEU	Labe

<u>.×</u>	Actual Label		Circle	Idle	Left-Right	Up-Down	
Matr		Circle	205	10	1	46	
Confusion Matrix		Idle	6	199	0	32	
onfu		ctual	Left-Right	9	17	223	34
ŭ		Up-Down	21	8	3	186	
Per-class accuracy		0.907	0.927	0.936	0.856		

Total accuracy: 0.813

0.815

F1 scores

F1 average: 0.818

0.845

0.875

0.721

F1 score is indicative of dataset balance

		Predicted Label				
<u>.×</u>			Circle	Idle	Left-Right	Up-Down
Matri	<u> </u>	Circle	0	6	0	0
sion	Actual Label	Idle	0	973	0	0
Confusion Matrix	ctual	Left-Right	0	11	0	0
	∢	Up-Down	0	10	0	0
Per-class accuracy		0.994	0.973	0.989	0.99	
		F1 scores	0.0	0.986	0.0	0.0

Total accuracy: 0.973

F1 average: 0.247

Model fit

Overfit: Model captures training data trends but fails on unseen data

Accuracy vs epoch to understand dataset

Loss vs epoch to understand dataset

Fixing underfit

Underfit: Model performs poorly on training and validation data

- Get more data
- Try different features or more features
- Train for longer
- Try a more complex model (more layers, more nodes, etc.)

Fixing overfit

- Get more data
- Early stopping
- Reduce model complexity
- Add regularization terms
- Add dropout layers (for neural networks)

Overfit: Model predicts training data well but fails to generalize to validation data

Model characterization in realtime

Output of the model

P(left-right) = 0.9143 P(up-down) = 0.0032 P(circle) = 0.0581 P(idle) = 0.0244

Action after classification


```
if (p_left_right > 0.5) {
    // Do stuff
if (p_up_down > 0.5) {
    // Do some things
if (p_circle > 0.8) {
    // And now for something completely different
```