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Sensor Fusion: An Introduction
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 What is sensor fusion?

 Why perform sensor fusion?

 The art and science of combining data from 
multiple sensors to produce an estimate 
that’s better than any single sensor alone.

• More accurate, stable, complete, 
and therefore robust.

• “Teamwork for sensors”

 Completeness
 Noise & drift
 Redundancy & safety

 Everyday examples:
• Smartphones: Accelerometer + gyroscope + magnetometer (screen rotation, navigation)
• Cars & robots: Cameras + lidar + radar for detecting lanes, obstacles, and distances.
• Wearables: Optical heart-rate + accelerometer to filter motion artifacts.

https://www.youtube.com/watch?v=hyGJBV1xnJI

Presenter
Presentation Notes
Why perform sensor fusion?
-Completeness: one sensor can’t “see” everything (GPS knows position, but not orientation).
-Noise & drift: some sensors are jumpy (noisy); others slowly wander (drift). Together, they can cancel each other’s weaknesses.
-Redundancy & safety: multiple views of the same quantity let you detect failures and outliers.




https://www.youtube.com/watch?v=hyGJBV1xnJI


Sensor Fusion: A relatable mental model + core behaviors
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• Bias (offset)
• Noise
• Drift
• Resolution & range
• Bandwidth/latency
• Sampling rate

 Imagine a coffee mug filled with hot coffee; you try telling the temperature by:

• Touching the cup (noisy but instant feel), and
• Watching the steam (slow cue but less noisy)

 A good estimate of temperature blends both methods: quick responsiveness from 
your touch and stable confirmation from the steam.

 Sensor fusion formalizes this idea with math.

Key idea: Fusion works only as well as your 
understanding of each sensor’s imperfections.

 Core sensor behaviors (the various parts):

https://doi.org/10.1016/B978-0-12-811153-6.00001-4

Presenter
Presentation Notes
Bias (offset): a sensor reads too high/low even when the true value is zero.
Noise: random variation in readings (often modeled as Gaussian).
Drift: bias changes over time (e.g., gyros).
Resolution & range: the smallest change you can measure vs. maximum measurable value.
Bandwidth/latency: how fast the sensor responds and how long it takes to deliver data.
Sampling rate: measurements per second; too low can miss dynamics (Nyquist).

https://doi.org/10.1016/B978-0-12-811153-6.00001-4
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Levels of fusion and alignment of signal data
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 Levels of fusion:

 Before blending data, you must align it:

3. Decision level: Combine independent decisions.

For first projects, you’ll usually start at the raw level.

1. Raw data level: Combine measurements directly.
2. Feature level: Combine extracted features .

 Coordinate frames: Express all measurements in a common frame.
 Calibration: Determine scale factors, axis misalignment, and bias.
 Time synchronization: If two sensors don’t share a clock, you must align timestamps; otherwise, 

fusion can “smear” fast motions.
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Presenter
Presentation Notes
Raw data level: Combine measurements directly (e.g., blending angle from accelerometer with integrated gyro angle).
Feature level: Combine extracted features (e.g., room corners from cameras with room edges from lidar).
Decision level: Combine independent decisions (e.g., “pedestrian detected” from radar AND camera).

Before blending data, you must align it:
Coordinate frames: Express all measurements in a common frame (e.g., body frame vs. world frame).
Calibration: Determine scale factors, axis misalignment, and bias (e.g., place an accelerometer still to estimate bias).
Time synchronization: If two sensors don’t share a clock, you must align timestamps; otherwise, fusion can “smear” fast motions.

https://tinyurl.com/yc5bupfx


Multi-sensor data fusion in autonomous vehicles
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Multi-sensor data fusion in autonomous vehicles
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Kalman Filtering (aka Linear Quadratic Estimation)
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Kalman Filtering (aka Linear Quadratic Estimation)
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Kalman Filtering (aka Linear Quadratic Estimation)
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Kalman Filtering (aka Linear Quadratic Estimation)
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Kalman Filtering: State estimation via state transition model

11https://en.wikipedia.org/wiki/Kalman_filter

Estimate of the system’s state 
at time step k before the k-th 
measurement yk has been 
taken into account.

The a posteriori state estimate mean 
at time step k given observations up 
to and including time step k.

The a posteriori estimate 
covariance matrix, a measure of the 
estimated accuracy/uncertainty of 
the state estimate.

https://en.wikipedia.org/wiki/Kalman_filter


Arduino Demo: Wireless Sensor Fusion w/Light & Sound
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Wireless channels to be utilized:

IEEE: Qualcomm Buys Arduino

 LiFi (light) • LED on/off encodes bits.
• LDR samples and thresholds to recover bits.

 Audio (sound) • Buzzer emits short/long tones representing binary on/off (1/0) states
• Can utilize multiple tones to generate symbols

 Hardware overview

Tx Aruduino LED (light Tx) LDR (light Rx)

Mic (sound Rx)Buzzer (sound Tx)

Rx Aruduino

Presenter
Presentation Notes
Wireless channels to be utilized:
LiFi (light): Use description of bit/byte timing and start bit; show the receiver timing diagram and mention keeping sample mid-bit. (p.4)
Audio (sound): Note duration encoding and silence gaps; why frequency detection was tricky on the initial mic path (noisy amplitude, volume-dependent response). (pp.5–6)
Hardware overview: Insert TX schematic (p.3, top) and RX schematic (p.3, bottom) and prototype photo (p.4) as figure slides.

A summary of takeaways from Qualcomm’s purchase of Arduino:
Qualcomm is buying Arduino (announced 7 Oct 2025), surprising the maker community and raising questions about open-source hardware’s future. 
The news landed alongside a new board, Arduino Uno Q: a Qualcomm Dragonwing SoC plus a microcontroller, up to 4 GB RAM and 32 GB eMMC, capable of booting Linux while keeping MCU-style I/O—positioned more like a low-cost Raspberry Pi. 
Community skepticism centers on openness and part accessibility; critics worry Qualcomm’s B2B model could make chips hard to buy in small quantities. 
Qualcomm’s response: it says Dragonwing and other chips will be available in small quantities to individual developers. 
Arduino’s pledge: “born open, stay open”—licenses, repos, docs remain accessible; support for non-Qualcomm chips continues. 
Strategic angle: Qualcomm wants a bigger industrial/IoT ecosystem; the deal follows purchases like Edge Impulse and Foundries.io, and aims to leverage Arduino’s massive developer base (IDE 36M downloads in the past year). 
Tooling push: Arduino’s new App Lab IDE ties the Linux SoC and MCU together and includes building blocks for embedded AI—another sign the combo targets lightweight edge-AI projects.


https://spectrum.ieee.org/qualcomm-arduino-acquisition-open-source


Sensor Fusion: Schematics
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Transmitter (Tx) schematic Receiver (Rx) schematic



Writing/assembling sketch blocks across different model versions
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Version 1 core receiver functions: 
• pickUpSound(): Measures peak amplitude vs. defined threshold.
• senseLight():  Measures instant threshold.
• getLightByte(): Performs mid-bit sampling.
• decodeBinary(): Assemble 8-bit characters.

Version 3: Auto-thresholding
• Includes startup calibration for ambient light & noise .
• 2-second moving averages/peaks + buffers).

Version 2: Speed tuning
• Reduce dotDuration, dashDuration, bitGap, charGap.
• Button behavior updates.

Version 4: Stable silence
• Avoid misreading sine-wave near-zero crossings by requiring periods of silence.
• Move timing to micros() for 1 ms → 1 µs-scale control.

Arduino code jointly developed by Gary Chen, Samuel Ye, and Walter Unglaub and available for download at: 
https://github.com/Garbear008/Sensor-Fusion-Project.

Presenter
Presentation Notes
Core receiver functions (Version 1): pickUpSound() (peak amplitude vs. threshold), senseLight() (instant threshold), getLightByte() (mid-bit sampling), decodeBinary() (assemble 8-bit char) (p.5) 
Auto-thresholding (Version 2): startup calibration for ambient light & noise (2 s moving averages/peaks + buffers). (p.5) 
Speed tuning (Version 3): reduce dotDuration, dashDuration, bitGap, charGap; button behavior updates. (p.6) 
Stable silence (Version 4): avoid misreading sine-wave near-zero crossings by requiring periods of silence; move timing to micros() for 1 ms → 1 µs-scale control. (p.6)

Maybe: show pseudocode snippets for: bias/threshold calibration; mid-bit sampling; silence-window logic.


https://github.com/Garbear008/Sensor-Fusion-Project
https://github.com/Garbear008/Sensor-Fusion-Project
https://github.com/Garbear008/Sensor-Fusion-Project
https://github.com/Garbear008/Sensor-Fusion-Project
https://github.com/Garbear008/Sensor-Fusion-Project


Arduino codes: Fuse models (from 2 channels  fusion)
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• Multi-symbol audio: combine durations + multiple frequencies to encode 4 bits/packet.
• Practical mic & buzzer limits.
• Zero-crossing frequency estimate (±200–300 Hz).

 fuseV1: OR-fusion concept

• Stable-silence integrated → dotDuration down to ~750 µs.
 fuseV2: Speed-up carried over

 fuseV3: Symbol design

• Receive characters via light AND sound in parallel.
• Take the first printable char per position (light-dominant or sound-dominant views), 

with a clear buffers command.

Presenter
Presentation Notes
OR-fusion idea: receive characters via light AND sound in parallel; take the first printable char per position (light-dominant or sound-dominant views), with a clear buffers command. (Fuse 1) (p.6) 
Speed-up carried over: stable-silence integrated → dotDuration down to ~750 µs. (Fuse 2) (p.6) 
Symbol design (Fuse 3): multi-symbol audio: combine durations + multiple frequencies to encode 4 bits/packet; practical mic & buzzer limits; zero-crossing frequency estimate (±200–300 Hz). (pp.6–7)
Include a simple symbol table slide (e.g., 2 durations × 8 freqs = 16 symbols). 

Live demo cue: dim the light or cover the LDR: audio still delivers; then add noise near mic: show light-only delivery.



Arduino codes: Comb models (three channels & integrity checks)
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• 16 MHz clock, ADC 13 cycles.
• Default prescaler 128 → ~112 µs/read.
• Lower to 8 → ~8 µs/read. 
• Enables dotDuration ≈ 100 µs.
• Light period ~2 ms.
• Tighter audio freq bands (≈1.5–3 kHz).

 Comb 1 concept:
• Return to 1-bit audio to run three channels at once (light + 1-bit audio + multi-tone audio) for redundancy.
• Structured displays: displayString, realString, trashString to visualize error screening.

 Error detection:
• Parity bit (even or odd) on ASCII bytes; quick to compute, detects odd-bit flips but not even.
• Checksum (Comb 1): simple bit-position sums → remainder product; appended after a stop byte.

 Error correction (Comb 2):
• Uses Hamming (11,7) and extended (12,7) SECDED error-correction code intuition.
• This means locating and fixing single-bit errors; double-bit detect. 

 Performance engineering (Comb 3): ADC pre-scaler change

Presenter
Presentation Notes
Comb 1 concept: return to 1-bit audio to run three channels at once (light + 1-bit audio + multi-tone audio) for redundancy; structured displays: displayString, realString, trashString to visualize error screening. (p.7) 
Error detection:
Parity bit (even or odd) on ASCII bytes; quick to compute, detects odd-bit flips but not even. (p.7) 
Checksum (Comb 1): simple bit-position sums → remainder product; appended after a stop byte. (p.8) 
Error correction (Comb 2): Hamming (11,7) and extended (12,7) SECDED intuition—locating and fixing single-bit errors; double-bit detect. Use the 4-parity grid explanation. (p.8) 
Performance engineering (Comb 3): ADC prescaler change: 16 MHz clock, ADC 13 cycles; default prescaler 128: ~112 µs/read; lower to 8 : ~8 µs/read. Enables dotDuration  ~100 µs; light period ~2 ms; tighter audio freq bands (~1.5–3 kHz). (p.9) 
Live demo cue: flip between manual/auto modes, print the three strings, purposely inject an error (block LED mid-byte) and let parity/checksum/Hamming show detection/correction.




Arduino Demo: Summary and Lessons Learned
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 Timing alignment
• Consistent start bit for light; silence windows for audio.
• Per-char synchronization before fusion.

 Physical limits: 
• Buzzer frequency range ceiling.
• Mic amplitude dependence.
• Ambient light variability.
• LDR latency (light period choice).

 How the fusion algorithm “thinks”

 Shortcomings & lessons learned

 Decision logic
• Per-position printable-char check (light- or sound-

dominant) → build display string.

 Validity gates
• Parity/checksum/Hamming pre-filter what’s eligible 

to fuse.

 Failure handling
• Timeouts, sensor health (saturation, no-change), 

fallbacks (choose surviving channel).

 Algorithmic tradeoffs
• Duration vs. throughput
• Simple zero-crossing vs. FFT (speed).
• Parity/checksum coverage gaps (even-bit errors).

 Implementation realities
• ADC speed vs. accuracy.
• Timer granularity.
• Serial monitor throughput.



Arduino Demo: Extensions & Research Directions
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 Low-power redundant signaling for IoT in noisy/occluded spaces.
 Robotics comms in environments where RF is restricted (labs, hospitals).
 Visualizing redundancy, symbols, and error-control coding live.

 Richer symbols / more throughput
 Higher-Q audio front-end or different mic + true M-FSK (frequencies 

spaced by filter bandwidth) or PSK/FSK hybrid with better tone generation.
 Line coding (Manchester) to stabilize timing; framing and CRC for stronger 

detection.
 Interleaving + Hamming/CRC to handle bursts.

 More modalities
 Ultrasonic (HC-SR04 receiver mod/MEMS mic), IR, laser, RF (LoRa/FSK), vibration (piezo), magnetic (Hall).
 Extend OR-fusion to N-of-M voting or confidence-weighted fusion (e.g., lower weight for noisy mic frames).

 Better fusion
 Decision-level majority vote across channels; soft decisions using SNR estimates
 Time alignment via preambles and cross-correlation
 Kalman-style reliability weighting when channels provide continuous estimates (e.g., RSSI + lux)

 Applications



Common pitfalls and some tips to avoid them!
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 Outlier rejection: Ignore obviously bad readings.

 Name your axes consistently; keep track of rotations!

 Some general rules of thumb:

 Latency compensation: Delay (or extrapolate) other signals to align with a late sensor.

 Gating: Accept a measurement only if it’s “close enough” to the prediction.
 Normalization & unit checks: m/s vs. km/h errors are common!
 Health checks: If a sensor freezes or saturates, reduce its weight or drop it temporarily.

 Typical pitfalls (and some tips on how to avoid them!)

Sensor fusion is also about trusting the right sensor at the right time! 

 Not calibrating biases  Do a quick still-calibration on startup.

 Ignoring dynamics When accelerating, trust the gyro more than the accelerometer. 

 Bad timing/sync:  Use consistent timestamps.

Mismatched frames 

Start simple (accuracy before speed!), calibrate carefully, and let data quality guide the weights.

Presenter
Presentation Notes
Outlier rejection: Ignore obviously bad readings (e.g., radar return behind the car; this requires setting up rejection criteria)
Gating: Accept a measurement only if it’s “close enough” to the prediction (this reduces processing!)
Normalization & unit checks: m/s vs. km/h errors are common!
Health checks: If a sensor freezes or saturates, reduce its weight or drop it temporarily.
Latency compensation: Delay (or extrapolate) other signals to align with a late sensor.

Typical pitfalls (and how to avoid them)
Not calibrating biases: Even a tiny gyro bias can cause large angle drift over time. Do a quick still-calibration on startup.
Ignoring dynamics: Accelerometers measure specific force (gravity ± motion). When accelerating, the accelerometer angle is distorted; trust the gyro more in that moment.
Bad timing/sync: Milliseconds matter when estimating orientation at high rates. Use consistent timestamps.
Mismatched frames: Keep track of rotations (use right-hand rule) and name your axes consistently.

Sensor fusion is about trusting the right sensor at the right time, using models of motion and uncertainty to blend their signals. 
Start simple (complementary filter), calibrate carefully, and let data quality guide your weights.
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