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Arduino code jointly developed by Gary Chen, Samuel Ye, and Walter Unglaub and available for download at:
https://github.com/Garbear008/Sensor-Fusion-Project.
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Sensor Fusion: An Introduction

> What is sensor fusion?

¢ The art and science of combining data from
multiple sensors to produce an estimate
that’s better than any single sensor alone.

* More accurate, stable, complete,
and therefore robust.

e “Teamwork for sensors”

» Why perform sensor fusion?
v' Completeness
v Noise & drift

v' Redundancy & safety

» Everyday examples:

USC

https://www.youtube.com/watch?v=hyGJBV1xnJI
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* Smartphones: Accelerometer + gyroscope + magnetometer (screen rotation, navigation)
e Cars & robots: Cameras + lidar + radar for detecting lanes, obstacles, and distances.

 Wearables: Optical heart-rate + accelerometer to filter motion artifacts.


Presenter
Presentation Notes
Why perform sensor fusion?
-Completeness: one sensor can’t “see” everything (GPS knows position, but not orientation).
-Noise & drift: some sensors are jumpy (noisy); others slowly wander (drift). Together, they can cancel each other’s weaknesses.
-Redundancy & safety: multiple views of the same quantity let you detect failures and outliers.




https://www.youtube.com/watch?v=hyGJBV1xnJI

Sensor Fusion: A relatable mental model + core behaviors USC
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+* Imagine a coffee mug filled with hot coffee; you try telling the temperature by:

* Touching the cup (noisy but instant feel), and
* Watching the steam (slow cue but less noisy)

» A good estimate of temperature blends both methods: quick responsiveness from
your touch and stable confirmation from the steam. [

Control Application Control Application

» Sensor fusion formalizes this idea with math.
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Presentation Notes
Bias (offset): a sensor reads too high/low even when the true value is zero.
Noise: random variation in readings (often modeled as Gaussian).
Drift: bias changes over time (e.g., gyros).
Resolution & range: the smallest change you can measure vs. maximum measurable value.
Bandwidth/latency: how fast the sensor responds and how long it takes to deliver data.
Sampling rate: measurements per second; too low can miss dynamics (Nyquist).
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‘Levels of fusion and alignment of signal data

** Levels of fusion:

1. Raw data level: Combine measurements directly.
2. Feature level: Combine extracted features .

3. Decision level: Combine independent decisions.

For first projects, you’ll usually start at the raw level.

Data provided by different sensors

¢ Before blending data, you must align it:

v' Coordinate frames: Express all measurements in a common frame.

v’ Calibration: Determine scale factors, axis misalignment, and bias.
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v" Time synchronization: If two sensors don’t share a clock, you must align timestamps; otherwise,

fusion can “smear” fast motions.
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Presentation Notes
Raw data level: Combine measurements directly (e.g., blending angle from accelerometer with integrated gyro angle).
Feature level: Combine extracted features (e.g., room corners from cameras with room edges from lidar).
Decision level: Combine independent decisions (e.g., “pedestrian detected” from radar AND camera).

Before blending data, you must align it:
Coordinate frames: Express all measurements in a common frame (e.g., body frame vs. world frame).
Calibration: Determine scale factors, axis misalignment, and bias (e.g., place an accelerometer still to estimate bias).
Time synchronization: If two sensors don’t share a clock, you must align timestamps; otherwise, fusion can “smear” fast motions.

https://tinyurl.com/yc5bupfx

Multi-sensor data fusion in autonomous vehicles

*edestrian ahead
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Pedestrian 12 meters ahead

www.digitaldividedata.com/blog/multi-sensor-data-fusion-in-autonomous-vehicles
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Multi-sensor data fusion in autonomous vehicles
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YouTube: MATLAB: Why Use Kalman Filters? | Understanding Kalman Filters 7
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Kalman Filtering (aka Linear Quadratic Estimation) USC
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Kalman Filtering (aka Linear Quadratic Estimation)
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YouTube: MATLAB: Why Use Kalman Filters? | Understanding Kalman Filters
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Kalman Filtering: State estimation via state transition model USC
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https://en.wikipedia.org/wiki/Kalman filter 11
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“Arduino Demo: Wireless Sensor Fusion w/Light & Sound USC

University of
Southem California

Wireless channels to be utilized:

«* LiFi (light) LED on/off encodes bits.
LDR samples and thresholds to recover bits.

% Audio (sound) * Buzzer emits short/long tones representing binary on/off (1/0) states
Can utilize multiple tones to generate symbols

+* Hardware overview IEEE: Qualcomm Buys Arduino
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Presentation Notes
Wireless channels to be utilized:
LiFi (light): Use description of bit/byte timing and start bit; show the receiver timing diagram and mention keeping sample mid-bit. (p.4)
Audio (sound): Note duration encoding and silence gaps; why frequency detection was tricky on the initial mic path (noisy amplitude, volume-dependent response). (pp.5–6)
Hardware overview: Insert TX schematic (p.3, top) and RX schematic (p.3, bottom) and prototype photo (p.4) as figure slides.

A summary of takeaways from Qualcomm’s purchase of Arduino:
Qualcomm is buying Arduino (announced 7 Oct 2025), surprising the maker community and raising questions about open-source hardware’s future. 
The news landed alongside a new board, Arduino Uno Q: a Qualcomm Dragonwing SoC plus a microcontroller, up to 4 GB RAM and 32 GB eMMC, capable of booting Linux while keeping MCU-style I/O—positioned more like a low-cost Raspberry Pi. 
Community skepticism centers on openness and part accessibility; critics worry Qualcomm’s B2B model could make chips hard to buy in small quantities. 
Qualcomm’s response: it says Dragonwing and other chips will be available in small quantities to individual developers. 
Arduino’s pledge: “born open, stay open”—licenses, repos, docs remain accessible; support for non-Qualcomm chips continues. 
Strategic angle: Qualcomm wants a bigger industrial/IoT ecosystem; the deal follows purchases like Edge Impulse and Foundries.io, and aims to leverage Arduino’s massive developer base (IDE 36M downloads in the past year). 
Tooling push: Arduino’s new App Lab IDE ties the Linux SoC and MCU together and includes building blocks for embedded AI—another sign the combo targets lightweight edge-AI projects.


https://spectrum.ieee.org/qualcomm-arduino-acquisition-open-source

Sensor Fusion: Schematics US
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@Vriting/assembling sketch blocks across different model versions USC
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Version 1 core receiver functions:
* pickUpSound(): Measures peak amplitude vs. defined threshold.

 senselLight(): Measures instant threshold.
« getLightByte(): Performs mid-bit sampling.
 decodeBinary(): Assemble 8-bit characters.

Version 2: Speed tuning
* Reduce dotDuration, dashDuration, bitGap, charGap.
* Button behavior updates.

Version 3: Auto-thresholding
* Includes startup calibration for ambient light & noise .
* 2-second moving averages/peaks + buffers).

Version 4: Stable silence
* Avoid misreading sine-wave near-zero crossings by requiring periods of silence.
* Move timing tomicros() for 1 ms = 1 ps-scale control.

Arduino code jointly developed by Gary Chen, Samuel Ye, and Walter Unglaub and available for download at:
https://github.com/Garbear008/Sensor-Fusion-Project.
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Presentation Notes
Core receiver functions (Version 1): pickUpSound() (peak amplitude vs. threshold), senseLight() (instant threshold), getLightByte() (mid-bit sampling), decodeBinary() (assemble 8-bit char) (p.5) 
Auto-thresholding (Version 2): startup calibration for ambient light & noise (2 s moving averages/peaks + buffers). (p.5) 
Speed tuning (Version 3): reduce dotDuration, dashDuration, bitGap, charGap; button behavior updates. (p.6) 
Stable silence (Version 4): avoid misreading sine-wave near-zero crossings by requiring periods of silence; move timing to micros() for 1 ms → 1 µs-scale control. (p.6)

Maybe: show pseudocode snippets for: bias/threshold calibration; mid-bit sampling; silence-window logic.
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“Arduino codes: Fuse models (from 2 channels = fusion) USC
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» fuseV1: OR-fusion concept

* Receive characters via light AND sound in parallel.
* Take the first printable char per position (light-dominant or sound-dominant views),
with a clear buffers command.

» fuseV2: Speed-up carried over
e Stable-silence integrated - dotDuration down to ~750 ps.

» fuseV3: Symbol design

* Multi-symbol audio: combine durations + multiple frequencies to encode 4 bits/packet.
* Practical mic & buzzer limits.
e Zero-crossing frequency estimate (+200—-300 Hz).

15


Presenter
Presentation Notes
OR-fusion idea: receive characters via light AND sound in parallel; take the first printable char per position (light-dominant or sound-dominant views), with a clear buffers command. (Fuse 1) (p.6) 
Speed-up carried over: stable-silence integrated → dotDuration down to ~750 µs. (Fuse 2) (p.6) 
Symbol design (Fuse 3): multi-symbol audio: combine durations + multiple frequencies to encode 4 bits/packet; practical mic & buzzer limits; zero-crossing frequency estimate (±200–300 Hz). (pp.6–7)
Include a simple symbol table slide (e.g., 2 durations × 8 freqs = 16 symbols). 

Live demo cue: dim the light or cover the LDR: audio still delivers; then add noise near mic: show light-only delivery.


“Arduino codes: Comb models (three channels & integrity checks)  USC

University of
Southem California

» Comb 1 concept:

e Return to 1-bit audio to run three channels at once (light + 1-bit audio + multi-tone audio) for redundancy.
 Structured displays: displayString, realString, trashString to visualize error screening.

> Error detection:

 Parity bit (even or odd) on ASCII bytes; quick to compute, detects odd-bit flips but not even.
e Checksum (Comb 1): simple bit-position sums - remainder product; appended after a stop byte.

» Error correction (Comb 2):

 Uses Hamming (11,7) and extended (12,7) SECDED error-correction code intuition.
* This means locating and fixing single-bit errors; double-bit detect.

» Performance engineering (Comb 3): ADC pre-scaler change
* 16 MHz clock, ADC 13 cycles.
» Default prescaler 128 - ~112 us/read.
* Lower to 8 - ~8 ps/read.
* Enables dotDuration = 100 ps.
* Light period ~2 ms.

* Tighter audio freq bands (=1.5-3 kHz). 16


Presenter
Presentation Notes
Comb 1 concept: return to 1-bit audio to run three channels at once (light + 1-bit audio + multi-tone audio) for redundancy; structured displays: displayString, realString, trashString to visualize error screening. (p.7) 
Error detection:
Parity bit (even or odd) on ASCII bytes; quick to compute, detects odd-bit flips but not even. (p.7) 
Checksum (Comb 1): simple bit-position sums → remainder product; appended after a stop byte. (p.8) 
Error correction (Comb 2): Hamming (11,7) and extended (12,7) SECDED intuition—locating and fixing single-bit errors; double-bit detect. Use the 4-parity grid explanation. (p.8) 
Performance engineering (Comb 3): ADC prescaler change: 16 MHz clock, ADC 13 cycles; default prescaler 128: ~112 µs/read; lower to 8 : ~8 µs/read. Enables dotDuration  ~100 µs; light period ~2 ms; tighter audio freq bands (~1.5–3 kHz). (p.9) 
Live demo cue: flip between manual/auto modes, print the three strings, purposely inject an error (block LED mid-byte) and let parity/checksum/Hamming show detection/correction.



Arduino Demo: Summary and Lessons Learned USC
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** How the fusion algorithm “thinks”
» Timing alignment » Validity gates
* Consistent start bit for light; silence windows for audio. | | ¢ Parity/checksum/Hamming pre-filter what’s eligible
e Per-char synchronization before fusion. to fuse.
» Decision logic » Failure handling
* Per-position printable-char check (light- or sound- e Timeouts, sensor health (saturation, no-change),
dominant) = build display string. fallbacks (choose surviving channel).
“* Shortcomings & lessons learned > Algorithmic tradeoffs
e Duration vs. throughput
> Physical limits: * Simple zero-crossing vs. FFT (speed).
* Buzzer frequency range ceiling. * Parity/checksum coverage gaps (even-bit errors).
* Mic amplitude dependence.
« Ambient light variability. » Implementation realities
* LDR latency (light period choice). * ADC speed vs. accuracy.
e Timer granularity.
 Serial monitor throughput. 17




Arduino Demo: Extensions & Research Directions USC

University of
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%+ Richer symbols / more throughput Southem Calfornia

» Higher-Q audio front-end or different mic + true M-FSK (frequencies Frequency Shift Keying (FSK)
spaced by filter bandwidth) or PSK/FSK hybrid with better tone generation. ¢ o 1 o 1 o o 0o 1 o0

» Line coding (Manchester) to stabilize timing; framing and CRC for stronger

detection.
> Interleaving + Hamming/CRC to handle bursts. [UUWW\JMW\JM

\/

** More modalities
» Ultrasonic (HC-SR04 receiver mod/MEMS mic), IR, laser, RF (LoRa/FSK), vibration (piezo), magnetic (Hall).
» Extend OR-fusion to N-of-M voting or confidence-weighted fusion (e.g., lower weight for noisy mic frames).

¢ Better fusion
» Decision-level majority vote across channels; soft decisions using SNR estimates
» Time alighnment via preambles and cross-correlation
» Kalman-style reliability weighting when channels provide continuous estimates (e.g., RSSI + lux)

¢ Applications
v" Low-power redundant signaling for 10T in noisy/occluded spaces.
v" Robotics comms in environments where RF is restricted (labs, hospitals).

v’ Visualizing redundancy, symbols, and error-control coding live. 8



‘Common pitfalls and some tips to avoid them! USC

University of
Southem California

¢ Some general rules of thumb:

(J Outlier rejection: Ignore obviously bad readings.

J Gating: Accept a measurement only if it’s

) o

close enough” to the prediction.

(d Normalization & unit checks: m/s vs. km/h errors are common!

J Health checks: If a sensor freezes or saturates, reduce its weight or drop it temporarily.

J Latency compensation: Delay (or extrapolate) other signals to align with a late sensor.

¢ Typical pitfalls (and some tips on how to avoid them!)

» Not calibrating biases

v Do a quick still-calibration on startup.

» Ignoring dynamics

v When accelerating, trust the gyro more than the accelerometer.

> Bad timing/sync:

v’ Use consistent timestamps.

> Mismatched frames

v' Name your axes consistently; keep track of rotations!

¢ Sensor fusion is also about trusting the right sensor at the right time!

¢ Start simple (accuracy before speed!), calibrate carefully, and let data quality guide the weights.


Presenter
Presentation Notes
Outlier rejection: Ignore obviously bad readings (e.g., radar return behind the car; this requires setting up rejection criteria)
Gating: Accept a measurement only if it’s “close enough” to the prediction (this reduces processing!)
Normalization & unit checks: m/s vs. km/h errors are common!
Health checks: If a sensor freezes or saturates, reduce its weight or drop it temporarily.
Latency compensation: Delay (or extrapolate) other signals to align with a late sensor.

Typical pitfalls (and how to avoid them)
Not calibrating biases: Even a tiny gyro bias can cause large angle drift over time. Do a quick still-calibration on startup.
Ignoring dynamics: Accelerometers measure specific force (gravity ± motion). When accelerating, the accelerometer angle is distorted; trust the gyro more in that moment.
Bad timing/sync: Milliseconds matter when estimating orientation at high rates. Use consistent timestamps.
Mismatched frames: Keep track of rotations (use right-hand rule) and name your axes consistently.

Sensor fusion is about trusting the right sensor at the right time, using models of motion and uncertainty to blend their signals. 
Start simple (complementary filter), calibrate carefully, and let data quality guide your weights.
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Global Sensor Fusion Market Share, By Sensor, 2024
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